
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

A MODEL AND DECISION SUPPORT MECHANISM FOR
SOFTWARE REQUIREMENTS ENGINEERING

by

Osman Mohamed Ibrahim

September 1996

Thesis Advisor: Valdis Berzins

Approved for public release; distribution is unlimited.

19970311 016
3D I

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 1996
3. REPORT TYPE AND DATES COVERED

Ph.D. Dissertation

4. TITLE AND SUBTITLE

A MODEL AND DECISION SUPPORT MECHANISM FOR
SOFTWARE REQUIREMENTS ENGINEERING

5.1

6. AUTHOR(S)

Osman Mohamed Ibrahim.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this dissertation are those of the author and do not reflect the official policy or
position of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This dissertation introduces a formal model for requirements analysis and evolution and a decision
support mechanism based on that model. Both the model and the decision support mechanism provide
automated support for the early part of the prototyping process. The model is used to capture user reactions
to the demonstrated behavior of a prototype and map these reactions into the model objects to be used in
synthesizing a set of open issues to be resolved. The issues are resolved by examining and modifying
requirements if necessary, and then propagating the change consequences down into the affected parts of
system specification and implementations in a consistent and controlled manner.

This process is performed through a set of analysis and design activities controlled by the manager
and aided by the decision support mechanism based on the formal model. This approach also provides
support for maintaining design history and its rationale that can be used for implementing new needs or
performing comparative studies to choose among alternatives.

A formalism is also developed that supports customers in choosing among available alternatives to
requirements that satisfy their goals and meet other constraints.

14. SUBJECT TERMS

Software requirements, analysis and evolution, automated decision support,
formal models, design rationales, design databases, prototyping.

15. NUMBER OF PAGES

331
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

SECURITY CLASSIFICATION OF THIS PAGE

An improved decision support method based on this formalism supports individuals that represent
different customer view points to reach a final decision that represents the combined view of the
group.

A database is an important component of any decision support mechanism. This work also
provides a conceptual design of an engineering database capable of representing and managing the
process knowledge. This knowledge includes all information related to a software prototype
design. The management of this information includes storing, retrieving, viewing, and controlling
the design knowledge. The design of this engineering database is based on the object oriented
paradigm. This paradigm provides the representation power to easily map our model objects and
their relationships efficiently and naturally.

A new implementation model has also been developed that provides smooth and safe
communication between the implementation language and the database manipulation language.
The new implementation technique based on that model also allows the implementation language
to directly access the database facilities. This access is done without going through intermediate
layers of codes that must be implemented in another language. This is not possible without the new
technique.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

u

Approved for public release; distribution is unlimited

A MODEL AND DECISION SUPPORT MECHANISM FOR
SOFTWARE REQUIREMENTS ENGINEERING

Osman Mohamed Ibrahim
COL, Egyptian AirForce

B.S., Military Technical College, Cairo,.Egypt 1977
M.S.C.E., Institute of Statistical Studies and Research, Cairo University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1996

Author: (hmrwrahm?
Approved By:

Osman Mohamed Ibrahim.

'Luqi

Herschel H. Loomis, J;
Professor of Electrical & Computer

Engineering *

Approved by:.

Approved by:.

Man-Tak Shmg
tofessor of Computer Science

(X->^—> fy/C^
Qing Wang

Professor of Meteorology

(y

Valdis^Berzins
Professor of Computer Science

/ Dissertation Supervisor

^=^i\^JtU/J^
T. Lewis, Chairman, Department of Computer Science

my< // Cu/JA.
aurice D. Weir, Associate Provost for Instruction

in

XV

ABSTRACT

The early portion of the software prototyping process is missing automatic support

for many important activities that help the software manager and the design team members

firm up requirements and control the system design and evolution to satisfy the customers'

real needs. This dissertation introduces a formal model for requirements analysis and

evolution and a decision support mechanism based on that model. Both the model and the

decision support mechanism provide the missing support identified above. Within the

framework of this model the support provided spans the whole life cycle of the software

development process. The model is used to capture user reactions to the demonstrated

behavior of a prototype and map these reactions into the model objects to be used in

synthesizing a set of open issues to be resolved. The issues are resolved by examining and

modifying requirements if necessary, and then propagating the change consequences down

into the affected parts of system specification and implementations in a consistent and

controlled manner.

This process is performed through a set of analysis and design activities controlled

by the manager and aided by the decision support mechanism based on the formal model.

This approach also provides support for maintaining design history and its rationale that

can be used for implementing new needs or performing comparative studies to choose

among alternatives.

A formalism is also developed that supports customers in choosing among available

alternatives to requirements that satisfy their goals and meet other constraints. An improved

decision support method based on this formalism supports individuals that represent

different customer view points to reach a final decision that represents the combined view

of the group.

A database is an important component of any decision support mechanism. This

work also provides a conceptual design of an engineering database capable of representing

and managing the process knowledge. This knowledge includes all information related to

a software prototype design. The management of this information includes storing,

retrieving, viewing, and controlling the design knowledge. The design of this engineering

database is based on the object oriented paradigm. This paradigm provides the

representation power to easily map our model objects and their relationships efficiently and

naturally.

A new implementation model has also been developed that provides smooth and

safe communication between the implementation language and the database manipulation

language. The new implementation technique based on that model also allows the

implementation language to directly access the database facilities. This access is done

without going through intermediate layers of codes that must be implemented in another

language. This is not possible without the new technique.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM DEFINITION 2

B. CONTRIBUTION 4

C. WHY DECISION SUPPORT IS NEEDED FOR REQUIREMENTS 6

D. ORGANIZATION OF DISSERTATION 7

II. TECHNICAL BACKGROUND AND PREVIOUS RESEARCH 9

A. ACQUIRING AND ELICITING OF SOFTWARE REQUIREMENTS 9

B. REVIW OF RELATED WORK 11

1. IBIS Model 12

2. IBIS-Related Work 13

a. Inquiry-Cycle Model 13

b. gIBIS 14

c. CoNeX 15

d. REMAP 17

e. OSC 17

f. Others 18

g. Relation to our Work 18

3. Non-IBIS Models 20

a. RA 20

b. KBRA '.. 22

Vll

c. KAOS 22

4. Deductive Database Approach 24

5. CAPS Graph Model 28

C. THE ROLE OF PROTOTYPING IN THE SOFTWARE

DESIGN PROCESS 29

D. HOW PROTOTYPING CAN ENHANCE THE REQUIREMENTS

ENGINEERING PROCESS 31

1. Prototyping Approaches 33

a. Throwaway 34

b. Evolutionary 34

E. OVERVIEW OF CAPS 34

1. Editors 36

2. Execution Support 37

3. Project Control 37

4. The Software Base 38

F. OUR EXTENSIONS TO CAPS 38

IE. A MODEL FOR REQUIREMENTS ENGINEERING

VIA RAPID PROTOTYPING 41

A. THEORETICAL BASIS 41

1. The Primitives for a Conceptual Model 42

2. Input to Steps 43

a. Primary Input 43

b. Secondary Input 44

vm

3. Induced Steps 44

4. Dependencies 45

5. Step States: 45

B. THE REQUIREMENTS EXTENSION OF THE GRAPH MODEL 46

1. The Graph Nodes 46

a. Analysis Vs. Design Steps 46

b. Software Components 48

2. Relationships 48

3. Formulation of The Model 51

4. The Process 52

a. Demo Step 53

b. Issue Analysis Step 54

c. Requirements Analysis Step 55

d. Design Change Step 59

IV. DECISION SUPPORT MECHANISM BASED ON THE MODEL 61

A. TYPES OF DECISION SUPPORT PROVIDED 61

1. Automatic Generation of Analysis and Design Activities 62

2. Dependencies computation 63

a. Affects Rule.... 63

b. UsedByRule 64

c. PartOf Rule 65

d. Affected Components Rule 66

IX

e. Secondary Input Rule 67

f. UsedBy Direction in the PSDL Hierarchy 69

3. Alternatives Generation and Evaluation Support 71

a. Alternative Generation 71

b. Alternatives Evaluation 74

4. Relevant Information 75

a. An Estimate of the Issue Resolution Effort 76

b. An Estimate of the Issue Resolution Complexity 77

B. OTHER TYPES OF DECISION SUPPORT 81

1. Teamwork Support 81

2. Scheduling Support 83

3. Propagating Inherited Properties 83

4. Structuring Support 84

C. DECISION SUPPORT COMPONENTS 86

1. The Database Component 87

2. The Model Component 88

3. The User Interface Component 90

V. SUPPORTING STAKEHOLDER DELIBERATION AND JUDGEMENT 93

A. A METHOD FOR CHOOSING AMONG ALTERNATIVES 93

1. The AHP Process 93

a. The Main Diagonal Rule 94

b. Reciprocals Rule 95

2. The Pairwise Comparison Scale 96

B. ALTERNATIVES WEIGHTING METHODOLOGY 96

1. Priorities Vector 97

2. Consistency in Selecting Alternatives 98

3. Mathematical Justification 100

C. MULTI-LEVEL HIERARCHY DECISION PROBLEMS 103

1. Composite Priority Vector 104

2. Composite Inconsistency 105

D. IMPROVEMENT OF THE AHP 105

1. Improving the AHP Scale 106

2. Computation Improvement 107

3. Combining Parallel Judgements 110

4. Combining IBIS and the AHP 115

E. Q-IBIS 117

1. Types 118

2. Relationships 120

F. THE APPLICATION OF THE IMPROVED AHP PROCESS 121

VI. CONCEPTUAL DESIGN OF THE DATABASE 125

A. DESIGN CONSTRAINTS 125

1. General Constraints 125

2. Constraints Imposed by CAPS 126

3. Functional Constraints 127

XI

B. DATABASE SCHEMA DESIGN 127

1. Types 128

2. Schema Type Hierarchy 129

C. SCHEMA DESCRIPTION 130

1. Type Object 130

2. Type Relation_Domain 132

3. Type Human 139

4. Type Versioned_Object 141

5. Type Version 145

6. Type Component_Reference 148

7. Type Step 149

8. Other Types 152

D. CONCURRENCY CONTROL 152

1. Concurrency Control Scheme in ONTOS DB 154

a. Conflict Detection Protocols 154

b. Conflict Response Protocols 155

c. Buffering Protocols 155

2. Concurrency Control Policies 156

a. Conservative Policy: 156

b. Time-based Policy: 156

c. Optimistic Policy: 157

3. Recommendation 157

Xll

VII. IMPLEMENTATION MODEL 159

A. THE DATABASE ENGINE 159

1. Why ONTOS DB 159

2. Data Manipulation Language Problem 159

3. Outline of the Solution 160

B. AN ADA BINDING FOR ONTOS DB 161

1. Motivation 161

2. A New Inter-Communication Methodology Between Ada and C++ 162

a. Inter-Communication Controller (ICC) 162

b. Communication Protocol 163

3. Inter-Communication within the ICC 165

C. DEVELOPMENT TEMPLATE 167

1. Schema Code Units 168

a. Definition Units: 168

b. Implementation Units: 169

2. Supporting Units 169

a. Interface Units: 169

b. Database Utility Units: 171

c. Exception Interface Units: 171

3. Ada Images of the C++ Code Units 172

a. The Schema Types Images: 173

b. The Database Utility Image: 174

xiu

c. The Exception Interface Image: 175

d. Iterators 176

D. AN EXTENSION TO THE TEMPLATE 178

VIE. CASE STUDY 181

A. THE REQUIREMENTS SET 184

1. Current State of the Requirement Components 184

B. CURRENT STATE OF THE DESIGN 185

C. DEMONSTRATION 188

1. Individuals 188

2. Criticisms 189

3. Issues 190

4. Issues Resolution 192

a. The First Issue 193

b. The Second Issue 193

c. The Third Issue 194

D. DETAILED STUDY 195

1. Available Alternatives 195

a. Alternative 1 196

b. Alternative 2 197

c. Modifying the Dependency Graph 198

d. Analyzing the Impacts on the Design 200

e. Inference of New Relationships 202

XIV

f. Supporting Information 202

E. FORMAL DEBATE SUPPORT 204

1. Inputs 204

2. Problem Structure 205

3. Individual Judgements 206

4. Group judgement 209

5. Evolving Requirements and Design 210

DC. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH 215

A. CONCLUSION 215

B. SUGGESTIONS FOR FUTURE RESEARCH 216

LIST OF REFERENCES 219

APPENDIX A. TEMPLATE CODE 227

APPENDIX B. EXTENDED TEMPLATE CODE 283

APPENDIX C. PRIORITY VECTORS COMPUTATION PROGRAMS 293

APPENDIX D. PRIORITY VECTORS COMPUTATIONAL RESULTS 297

APPENDIX E. COMPUTATIONAL RESULTS FOR THE CASE STUDY 305

INITIAL DISTRIBUTION LIST 311

xv

xvx

ACKNOWLEDGMENTS

First of all, I would like to acknowledge the unfailing love, devotion, and

unconditional support which I have received throughout this experience from my wife,

Lobna. She has given up so much and expected so little in return. Next, I must thank my

children Walaa, Mahmoud, and Hoda who kept calling me "Doc" a long time ago.

Secondly, I wish to express my deepest gratitude to Professor Valdis Berzins whose

support, guidance, knowledge, and enthusiasm have been a constant inspiration to me. His

patience and positive attitude were invaluable to this research. Thirdly, I am also deeply

indebted to the remaining members of my committee. Professor Luqi for her support and

valuable advice that always eased my tensions. Professor Shing for the insightful

discussions we often had. Professor Loomis for his support, caring, and comments

regarding my writing. Professor Qing for her comments and continuous encouragement.

I also wish to thank my fellow Ph. D. students from the EE Dept., Nabil Khalil and

Khalid Shehata who formed together with me the long nights of company.

Finally and most importantly I thank you God for making this all possible.

xvii

L INTRODUCTION

This dissertation defines a conceptual model and a decision support mechanism for

requirements analysis and validation in the computer-aided prototyping environment of

software design and development. Traditional models of requirements analysis do not use

the result of the requirements analysis process to provide automated decision support for

the system design process. In our approach changes in requirements automatically expose

the affected parts of the system design and implementation for use in automated project

planning and configuration control. We also provide automated support for customers to

pose their criticisms, discuss, and decide on the available alternatives to fix errors. The final

outcome of this deliberation process is a change request that reflects the justified view point

of the customer. Proposed plans for carrying out the work required by the change request

are automatically generated for managers to review, adjust if necessary, and then approve.

Our decision support mechanism also records and reasons with the design rationale.

Considering the complexity of today's software systems, and the increase in their

development costs, errors detected after system delivery are very expensive to fix.

Requirements errors are particularly expensive to fix at this late stage. About 50% of errors

or changes required in a delivered software systems and 75% of the total cost of error

removal are due to requirements [5]. According to the above reference, traditional software

development models (waterfall life-cycle approach) lack the guarantee that the resulting

product meets the real customer needs.

Requirements analysis and validation represent a bottleneck in the process of

producing software systems that satisfy the customers' real needs. It is important to detect

errors in requirements as early as possible. In terms of cost effectiveness, the cost of fixing

an error during system implementation can be several orders of magnitude higher than

fixing the error at the initial requirements analysis [82]. The problem of requirements

analysis and validation is even more severe in large embedded systems. If these systems

have strict real-time constraints, as is often the case, the problem is amplified.

The contributions of this dissertation addresses the problems identified above by

providing the formalism and automated support. Both can assist in analyzing, validating,

and controlling the evolution of system requirements with customers involvement. The

result are requirements that satisfy customer real needs and a system design that

consistently maps these requirements.

A. PROBLEM DEFINITION

The prototyping model is a recognized alternative to reduce the risk of a delivered

product that does not satisfy user requirements [54]. Prototyping has the advantage of the

customer involvement in the evaluation and validation process. Observing an executable

model of the proposed system stimulates users to judge the degree the demonstrated system

behavior meets their requirements.

Prototyping becomes even more powerful if supported by the appropriate tools to

assist or automate parts of the process. The Computer-Aided Prototyping System (CAPS)

is a set of tools for this purpose. CAPS is a software design environment that automates

many activities in the prototyping process. It assists designers to quickly draft the proposed

system design, generate and augment code, compile, and demonstrate this first cut

prototype to customers. This is done using a graphical user interface and supported by a

design database that contains the project information. It is also supported by a software base

that includes reusable components and search and retrieval mechanism.

The convergence of the prototype behavior to the customer requirements is

achieved through an iterative change/demonstrate/validate process. This process is greatly

improved if combined with a formalism and automated support for the early part of the

process. Specifically, the activities that start with the prototype demonstration and end by

responding to the user responses to evolve to the next version of the prototype lack

automatic support for many planning, control, coordination, and analysis activities that

assist the customers, designers, analysts, and the managers. The goal of the work reported

here is to provide such support. The intended support for responding to requirements

changes should be provided within the context of a formal model rich enough to span not

only the requirements analysis and evolution process but the whole system life cycle. The

main outlines of the additional formalism and support to achieve this goal includes:

1. The formal representation of requirements and their evolution.

2. Linking the change in requirements to the system design to automatically expose

the affected parts of this design.

3. Recording and reasoning with the design rationale.

4. Formalizing the demonstration process by providing the formal representation for

and recording the participating stakeholders, test scenarios, and the stakeholders'

criticisms to the demonstrated behavior of the prototype.

5. Analyzing the stakeholders' criticisms and synthesizing a set of issues based on

these criticisms to be resolved. Resolution of these issues assists in the convergence

of the design to the customers' real needs.

6. Automated assistance in identifying alternatives available to resolve open issues.

7. Assisting stakeholders in their evaluating the available alternatives to choose among

them based on specified criteria.

8. Providing a formal mechanism that supports stakeholders in the deliberation pro-

cess that precedes the final decision as to which alternative to choose. This same

mechanism is used to quantify and formalize judgement and provide the representa-

tion for the group final decisions.

9. Providing other support functionality including inferring additional information

from that given, specifying and enforcing constraints, and establishing relation-

ships.

10. The automatic generation of proposed plans to modify the design as a consequence

of requirements changes.

ILA design database capable of representing and encompassing this huge amount of

the process knowledge in a way close to the conceptual data model.

These are the main elements and characteristics of the problem on hand. As a

constraint on any resulting solution, the conceptual data model must build on, use, and be

consistent with the related efforts done within the projects. Among these is the evolution

control system (ECS) that represents a core in the project control functionality of CAPS.

B. CONTRIBUTION

The main contributions of this dissertation are:

1. The enhancement and extension of an evolution graph model into a conceptual

model that incorporates the modeling of the requirements analysis and evolution

process. This enables the extension of the project control functionality in CAPS to

include requirements evolution and the automated link of this evolution to the

design and implementation levels of the system prototype. Hence changes in

requirements automatically expose the other affected parts of the system. Automati-

cally generated plans are proposed to propagate the requirements changes into the

other system parts. This also enables the recording of and reasoning with design

rationales that span the whole system life cycle.

2. A new decision support mechanism based on the conceptual model and inference

rules to support inferring additional information from that given, specifying and

enforcing constraints, and establishing relationships. This mechanism also provides

the support to the individuals involved in the software design process including

a. Stakeholders from the customer side.

b. Software project managers.

c. Software analysts.

d. Software designers.

3. Adapting and improving a model for decision making to support the judgement of

stakeholders on choosing among alternative requirements changes. This model is

also used to combine individual judgements into a final group decision. This deci-

sion is then formalized into a change request to evolve requirements and expose the

affected parts of the system design. This contribution enables the involvement of the

customers directly in the process and formalizes their judgement on alternative

requirements changes.

4. Extending and improving the Issue-Based Information Systems (IBIS) model for

deliberation and design rationale capture on software requirements analysis. The

improvements include:

a. Increasing the formality degree of the model.

b. Combining it with the model in 3. to quantify and formalize judgements.These

improvements make the deliberation process more formal and based on

quantified measures. It also enables the capture of more relevant information

related to requirements change options, criteria of judgement on these options,

and the outcome of the deliberation process. This fills gaps in the IBIS model

that restricts its use effectively in our context.

5. The conceptual and architectural design of a project database capable of represent-

ing the model entities naturally along with time varying relationships that link these

entities. Object-Oriented Database paradigm is used in this design. The design

allows feasibility of practically implementing the proposed decision support facili-

ties.

6. A new implementation model which provides more effective communication

between Ada and C++ languages. This new technique enables Ada to use the facili-

ties of the Object-Oriented database (ONTOS) despite the fact that ONTOS has no

Ada binding. This step removes the main difficulties in implementing the design in

5. above. This is significant because ONTOS is one of the most advanced commer-

cial Object Oriented (0-0) databases available and because none of the available O-

O databases at this time supports Ada.

C. WHY DECISION SUPPORT IS NEEDED FOR REQUmEMENTS

The process of acquiring, analyzing, and evolving requirements is very complex.

This complexity increases in our context. This is due to the tasks of determining the effect

of the evolution on the other system parts as we explain in Chapter HI. Therefore automatic

support is needed. Some of the reasons behind this need are as follows:

1. The underlying structure of the problem at hand is complex and is characterized by

time-varying relationships.

2. A huge amount of information is captured during the process that requires tracking

beyond the capabilities of unassisted human individuals.

3. The automatic generation of analysis and design activities based on the existing or

inferred dependencies requires automatic support.

4. What-if kind of analysis is inherent in the process to reach consensus and study dif-

ferent promising options.

5. Alternative generation and evaluation for impact is normally encountered.

6. Managing the project resources is a critical task for better utilization.

7. Scheduling activities related to the process requires automatic support.

8. Automated decision support is also needed for:

• Automatic assistance for monitoring state transitions of activities.

• Default action triggering and assignment of default values

• Configuration management and evolution of the system (prototype) under

development.

• Controlling the dynamics for the ongoing changes during the course of design and

development.

• Computing or inferring values and relationships which are not explicitly stored

in the project database.

D. ORGANIZATION OF DISSERTATION

The rest of this dissertation is organized as follows: Chapter II provides preliminary

technical background and overviews related research works. In Chapter IE we develop a

formal model for requirements analysis and evolution. Chapter IV describes a decision

support mechanism based on the conceptual model developed in Chapter IE. This decision

support mechanism is extended in Chapter V to provide a formalism that assists and

quantifies stakeholders' judgements, and formalizes the decision making process. The

conceptual design of a project database is described in detail in Chapter VI. Chapter VII

provides a new implementation model that allows Ada use an object-oriented database

(ONTOS DB) facilities despite the fact that this database has no Ada binding. Chapter VIII

provides a detailed case study. Concluding remarks and directions for future study are given

in Chapter IX.

H. TECHNICAL BACKGROUND AND PREVIOUS RESEARCH

A. ACQUIRING AND ELICITING OF SOFTWARE REQUIREMENTS

Requirements can be defined as a set of system capabilities that must satisfy a set

of customer goals within a set of restricting constraints. The formulation of requirements

should also take into consideration the operational environment under which these

capabilities is provided.

Requirements analysis is the first phase in the software development process. It is

a highly critical step in the software fife cycle because of the inherent problems associated

with the process. Incompleteness, contradiction, and ambiguities are examples of such

problems [2]. Inconsistency is also a major concern in requirements analysis [24]. Unless

these kinds of problems are identified and resolved in the requirements analysis phase of

the software process, they can have very bad effects on the subsequent development steps

and will be very costly to fix in later stages. For this reason requirements analysis should

be done with great care and precision.

The requirements analysis process starts from an initial problem statement provided

by the customer and proceeds in three stages, requirements acquisition, functional

specification, and validation [2], [82]. Those three stages are not necessarily performed

sequentially (see Figure 2.1). At each stage the knowledge explored may be used to

feedback to the other stages. The initial problem statement is characterized as being

informal, incomplete, and vague.

Requirements acquisition is perhaps the most crucial part of the software process

[31] in part because it relies more on knowledge about the application domain about which

the analyst has a limited knowledge, and the customer is not normally qualified to specify

it accurately. Acquiring requirements starts with an elicitation process. Requirements

elicitation is the process of identifying needs and bridging the disparities among the

involved communities for the purpose of defining and distilling requirements to meet the

constraints of these communities [22]. The primary goal of requirements elicitation is

achieving a consensus among a group of customers about what they want. In the mean time

the analyst tries to work out some simplified model of the proposed system that captures

the concepts needed for describing the mini world in which the system will operate. Within

the context of the requirements acquisition process the system goals are identified and

elaborated along with the different kinds of constraints imposed on the system such as

resource, performance, and implementation constraints.

Requirement:;
Acquision

Functional
Spec. Validation

Figure 2.1 Requirements Analysis Phases

The goal of the functional specification stage is to construct a black-box model of

the proposed system [82]. This model captures just the aspects of the proposed system

behavior relevant to the users of that system. The output of the functional specification

activity is a set of external system interfaces to the proposed system. During this stage of

requirements analysis the effort is concentrated on answering the question what to build not

how it is built.

Validating requirements is the process through which the customers' real needs are

checked against the formalized requirements to make sure that the formalized requirements

accurately meet those needs. In our judgement, this process should be continuous and

10

spread during all activities of requirements analysis. There are three other separate steps

involved in validating requirements [73]:

1. The requirements should be shown to be consistent; any one requirement should not

conflict with any other.

2. The requirements should be shown to be complete including all functional and non

functional requirements.

3. The requirements should be shown to be realistic; there is no point in specifying

requirements which are unrealizable.

B. REVIW OF RELATED WORK

Hsia in [63] has identified nine research areas that have a significant payoff in

requirements engineering and the relative time-frame during which work in these research

areas is expected to have major effect on practice ranging from short, mid, and long-term.

Two areas were classified as short term: improving natural language specification and

prototyping. In the first area for example, work has been done to identify the attributes that

a requirements writing team should look for when they review a natural language

specification. Some pioneering work in this area is augmenting natural and formal language

specifications with scenarios which are based on a formal model, and are generated,

analyzed, and validated in a systematic manner [64]. Although the associated process

provides for understanding, analyzing, and describing system behavior in terms of ways the

system is expected to be used, this method currently can not deal with concurrent events,

timing constraints, and interaction among scenario views. A scenario of system interactions

with its environment is used by many of the object-oriented analysis methods [43] and it

has been identified as one of the means for achieving separation of concerns in describing

system behavior [55].

The second research area, prototyping (to be discussed in detail in the next section),

has proved very effective in the requirements engineering process and is recognized as a

part of the requirements process according to the IEEE standards [23].

11

Another research area in requirements engineering related to our work that was not

reported in [63] is the work done on the deliberation process with the intent of capturing

the process knowledge and using it for conflict resolution between different view points.

The application of such approaches to requirements engineering serves in providing

support for the elicitation process which can be viewed as a deliberation process between

the stakeholders, specially early in the exploration of the customer needs. Most of these

approaches employ ideas based on or similar to the IBIS model [35] for recording the

argumentation related to the deliberation process. Extensions to IBIS model provided by

these methods range from just augmenting the model with a hypertext-based tool to real

extension of the model types and relationships as explained below.

1. IBIS Model

The Issue-Based Information Systems (IBIS) model was developed by H. Rittel

[35] and is based on the principle that the design process for complex systems is

fundamentally a conversation among the stakeholders (e.g., designers, customers,

implementers) to resolve the design issues. According to this model, an issue is any

problem, concern, or question that may require a discussion for the design to proceed.

Each issue can have many positions where a position is a statement or assertion that

resolves an issue. Each position is supported by or objected to by one or more arguments.

The deliberation process in the IBIS model is represented by a network where the

nodes model issues, positions, and arguments, and the relationships among these elements

are modeled by the links in the network (see Figure 2.2).

A typical IBIS process starts by one user posting an issue node and may also post a

position node proposing one way to resolve the issue. He may support his position by

posting an argument node too. Another user may post a challenging position supported by

a set of arguments. Others may post other positions and/or arguments which support or

object to any of the positions. Additionally, other issues may be generated during this kind

12

of discussion and linked to the issues that suggest them. In the original IBIS, the intent of

this deliberation is for a stake holder to understand other's view points or convince them of

his.

Generalizes/
Specializes ISSUE

Replaces/
Questions/

Questions/
Suggested_By Responds_To

Questions/
Suggested_By

POSITION
Supports/
Objects_To

ARGUMENT

Figure 2.2 IBIS Model Types and Relationships

2. IBIS-Related Work

a. Inquiry-Cycle Model

This model provides the structure for describing and supporting discussion

about system requirements. It is a hypertext-based model that captures the dynamically

ongoing deliberation process. The model has three phases: Requirements Documentation,

Requirements Discussion, and Requirements Evolution [15]. In the first phase, the

proposed requirements are written by the stakeholders; each is a separate node in the

hypertext. In the second phase, the stakeholders conduct the discussion by posing

questions, answers, and possibly reasons that justify answers. The question-answer

deliberation process is driven by a scenario analysis technique that complements the model

13

to acquire requirements. The ultimate result of a requirements discussion is a commitment

to either freeze a requirement or change it, and a change request may be generated

accordingly. Notice that question-answer-reason is similar to the IBIS triple issue-position-

argument.

In this model there is the underlying assumption that there is a requirements

document available and the deliberation process is done within the context of a prepared

set of scenarios that question the behavior of the proposed system. However scenarios have

narrow coverage and the problem is multiplied if no requirements document is already

available. According to [44], the model is refined with the aim of better support for

collaboration through shared hypermedia. A group tool (EColabor) based on the refined

model was developed which uses Internet and World Wide Web technology for its

implementation. With this tool, the new instance of the Inquiry-Cycle model can handle

multimedia information, represent requirements analysis more flexibly, and introduce a

"reminder" type of discussion element that captures general and new ideas.

b. gIBIS

gDBIS (for graphical IBIS) is a direct implementation of IBIS model that also

provides a hypertext interface to this model. It is designed to facilitate the capture of the

early design deliberations. This hypertext system makes use of color and a relational

database for building and browsing typed IBIS networks. Further, gIBIS supports the

collaborative construction of these networks by the cooperating team members that may be

spread across a local area network [35].

The gIBIS interface is divided into four tiled windows: a graphical browser, a

structured index into the nodes, a control panel, and an inspection window. The browser

provides a visual presentation of the IBIS graph structure as well as the ability to create new

instances of the IBIS types in a context sensitive manner. The node index window provides

14

an ordered hierarchical view of the nodes in the current IBIS network. Nodes can also be

selected through the index as well as the browser. The control panel is composed of a set

of buttons which may be associated with menus to extend the functionality of the tool

beyond the simple node and link creation.

As the underlying representation of the knowledge in gIBIS is not formal

enough, its ability to reason with that knowledge is severely restricted [9], Further, gIBIS

also inherits the IBIS problems of lacking the explicit representation of goals and the

outcomes of the argumentation.

gIBIS is extended in [61] to superimpose issue-based and truth-maintenance

[36], [40] techniques to provide a merged capability for recording design rationale. The

intent of this superimposition was to combine the power of truth-maintenance approach for

use with automated inference techniques and the power of the issue-based approach to

express much of the informal and rhetorical information of the process. The new system

presents the user with issue-based structures that can be annotated with informal

information, and it provides an automated inference capability on these structures through

an underlying truth-maintenance and expert system. The latter system allows the user to

carry out what-if analysis by choosing different resolutions to design issues and it

graphically shows the propagation of the belief status among the components of an issue-

based system's style of display.

c. CoNeX

Coordination and Negotiation support for experts in design application

(CoNeX) has been developed as an extension to the DAID's (Development Assistance for

Intensive Database Applications) knowledge-based software information system

ConceptBase project [81]. It provides a group collaboration facilities and integrate different

tasks encountered in software projects. CoNex emphasizes integrating the semantics of the

15

software development domain with aspects of group work, and the social strategies to

negotiate problems by argumentation as well as assigning responsibilities for task

fulfillment by way of contracting [81].

CoNeX is based on the integration of three conceptual models: a group model

for task cooperation, a multiagent conversation model for task-oriented negotiation, and a

software process data model. The first model handles managing teams of experts (analysts,

designers, implementers, etc.) to execute a set of actions forming a plan. The second model

is concerned with controlling the interactions that task-oriented groups often use to achieve

or modify agreements. This is modelled by employing two techniques of conversation:

1. Conversation for actions: Messages are passed in order to assign plans to people, to

make binding commitments, to implement a plan in terms of activities, and guaran-

tee proper termination and acknowledgment of the task-oriented activities.

2. Conversation for negotiation: In this communication mode, opinions are exchanged

in terms of debate in order to coordinate goals, and agree upon some plan or activity

to be done through argument exchange and final decision making. This technique is

the one based on IBIS model of argumentation.

The software process data model (called CAD0 for Conversation among Agents

on Decisions over Objects [76]) is introduced by the content-oriented part of the whole

model. According to this model, the software process is viewed as a set of inter-related

design decisions realized by agents through actions. The result of a decision is the

transformation of input objects into output objects. It is also concerned with recording of

administrative aspects of software objects, recording of semantic aspects of software

objects including the semantic dependencies, and integrity control and partial automation

of administrative and content-oriented actions. This model also employs the abstraction

principles and deduction mechanism of the knowledge representation language Telos [42].

16

d. REMAP

The REpresentation and Maintenance of Process knowledge (REMAP) is a

system that captures the history about design decision in a structured manner [5]-[9]. The

underlying model of REMAP is an extension of the IBIS model to include more types and

relationships. A type for requirements was added to the model to represent the goal of the

deliberation process. Decision resolves an issue by selecting one of the latter's positions.

Arguments are explicitly qualified by assumptions. Constraints generated or implied from

the resolution process represent the linkage between the deliberation process and the

creation of artifacts.

REMAP uses Telos as a conceptual modeling language which provides the

capabilities to support the representation and reasoning with the process knowledge. Telos

provides automatic inferencing to enable access to the knowledge implicit in the model and

provide mechanisms to maintain the integrity of the knowledge base made up of

interconnected components that are incrementally modified. Additionally Telos provides

aggregation, classification and generalization mechanisms which are important features in

any object-oriented representation of knowledge bases.

e. OSC

OSC is a design tracking tool based on an extensible conceptual model for

recording design decisions and other supporting information. It consists of a design

database and a family of query, manipulation, and extension facilities [25]. The design

database maintains a record of the design decisions. With the extension facility, the design

database schema can be extended and new query or manipulation facilities can be added.

The architecture of this tool consists of three layers: a core that represents a seed version of

the database schema, an environment-specific envelope that can extend or customize the

core model, and an interaction envelope for customizing the user interface.

17

In the design database of OSC, the process knowledge is represented in objected

oriented fashion. Object types include problem elements, design decisions, assertions, and

agenda items. These types comprise the types of the seed version of the database schema

that can be specialized according to the context. Problem elements are the same as the IBIS

concept issue. Design decision represent information about possible actions and choices.

Assertion objects capture the justification for the decisions made. Agenda items are

reminder of such pending tasks as decisions that must be justified or assertions that must

be verified.

/. Others

Other models that employ ideas based on or similar to the IBIS model are the

IBE and SYNVIEW [9]. According to the aforementioned reference, these tools either lack

the explicit representation of the context in which the argumentation occurs, or do not

provide any reasoning to use the captured knowledge. IBE is a hypertext system based

directly on the IBIS model with functionality similar to those of gIBIS with the addition of

a document editor augmenting the hypertext. SYNVIEW [20] is a tool used to

cooperatively support indexing, evaluating, and synthesizing information through

interactions by many users with a common database. In the underlying model, an argument

is represented by a ranked list of items of evidence for or against a particular conclusion.

g. Relation to our Work

IBIS-related models as applied to requirements engineering concentrate on the

deliberation process without explicitly linking and using the process knowledge into the

lower level design artifacts. These models address the acquisition phase of requirements

engineering. In order to be practically useful, the mechanisms of these models should

augment or be linked to other models related to change impact analysis, evolution control,

18

decision analysis, etc. More expressive types and relationships make these models more

capable of capturing more relevant information.

Our model provides more enhanced capabilities than those provided by the

above models. We support not only the deliberation process as the case in the majority of

these models, but also use the outcome of the deliberation to evolve requirements and

expose the effect of the process on the other system artifacts. A plan for these system-wide

changes is automatically generated in a proposed state for further consideration by the

managers or analysts. In gIBIS, by contrast, the process ends by building the IBIS network.

Most of the above models are more suitable for recording the rationale behind

decisions. For example, in the OSC tool, the underlying model is simple and can be used

efficiently for tracking decisions. However, decisions are neither linked to the source of the

problem for which the decision is made, nor to where they impact Even with the extension

facility, the process remains within that frame. We provide the support for recording design

rationale as part of our model. In our case design rationale carry more information and is

tightly linked to the design itself. Additionally, in our case problems (issues) are linked to

individuals who raise them through criticism objects from one end and the rest of the

system from the other end.

In another example, although REMAP extends the IBIS model and makes it

more formal, it is classified with the models that deal with the up stream part of the process.

It is mainly concerned with the deliberation process. There is also the implicit assumption

that issues are given or generated during the deliberation process. In our work issues are

synthesized and formalized from the responses of the stakeholders stimulated by the system

demonstration. For each issue we provide the support for generating alternatives to resolve

the issue. These alternatives are generated after analyzing the requirements affected by the

issue. Stakeholders are also supported to select from these alternatives based on a formal

technique. This is done within the frame of a formal model that explicitly provides the

19

representation for the whole span of the analysis and design process not only the

deliberation process as is the case in REMAP.

Other important issues we address in our work which are missing in the above

models are the following:

1. Explicit representation of design artifacts at all levels.

2. Support for decision impact analysis in terms of revealing the consequences of mak-

ing decisions.

3. Evaluation of the available options in more formal way.

4. Automated support for generating activities to execute the decisions.

5. Automated support for generating proposed plans that include the activities in 4.

As a final note, many of the IBIS-based models that address requirements are

concerned with a static record of decisions made and their rationales that only serves for

documentation purposes. What is needed, though, is an active model of the requirement

decisions, the design decisions, and trade-offs and their evolution [62]. In our approach we

address these issues within the framework of our model.

3. Non-IBIS Models

a. RA

The Requirements Apprentice (RA) is an intelligent assistant for software

requirements acquisition and analysis [17]. The RA is developed as part of the

Programmer's Apprentice project [16] whose overall goal is the creation of an intelligent

assistant for all aspects of software development. The focus of RA is on the transition

between informal and formal specifications [31] supporting the earlier phases of creating

requirements in which ambiguity, contradiction, and incompleteness are inevitable.

Internally, the RA consists of three parts: Cake which is a system that provides

the basic knowledge representation and automated reasoning facilities, the executive that

20

contains algorithms and data structures specific to the RA, and the cliches library that

contains reusable fragments of requirements and associated domain models represented as

frame hierarchy. The executive handles interaction with the analyst and provides high-level

control of reasoning performed by Cake. The RA is an assistant to requirements analysts

and is not intended for use by end users. The analyst communicates with the executive by

issuing commands. Each command provides fragmentary information about an aspect of

the requirements being specified. The immediate implications of a command are processed

by Cake, added to the requirements knowledge base, and checked for consistency. If the

analyst makes a change in the description of the requirements, the executive incrementally

incorporates this modification into the knowledge base, retracting the invalidated

deductions, and replacing them with new deductions.

The interface to the RA displays three kinds of information [31]: the first

window displays information about requirements as it evolves, a dialog window for

entering commands by the analysts to the RA and displaying the latter immediate

responses, and a third window that displays a list of pending issues that need to be resolved.

The first window is basically a window into the knowledge base that can display

information in many formats, and can be used to inspect the contents of the cliches library

or inspect the reasoning behind the conclusions drawn by the RA.

In relation to our work, the range of users supported by the RA is limited to only

analysts. Ours supports all stakeholders: customers, analysts, project managers, and

designers. Also the feedback of the RA is to the analyst. This means the final requirements

mainly reflects his point of view. In our approach the feedback is always presented to the

customer through the demonstration. This makes requirements incrementally converge to

the customers' real needs.

21

b. KBRA

The Knowledge-Based Requirements Assistant (KBRA) is a component of the

knowledge-based software assistant (KBSA) [1], [21] funded by Rome Air Development

Center. Within the KBRA environment, requirements are entered into the system in any

order or level of detail in many different formats. The KBRA is then responsible for doing

any book keeping to allow the user to manipulate the requirements while it maintains

consistency among requirements.

According to [21], the KRBA capabilities include: support for multiple viewing

options (e.g., data flow, control flow, state transition, and functional flow diagrams),

management and editing tools to organize requirements, and the support for constraints and

non-functional requirements through the use of spread sheets and natural language

notations. KBRA can also perform requirements analysis to identify inconsistency and

incompleteness as well as generating explanations and descriptions of the evolving system.

To build and maintain a consistent representation of requirements, KBRA provides truth-

maintenance support including default reasoning and dependency tracing.

According to [1], there is no strong guarantee that the final requirements meet

the customers' real needs. This is due to the fact that KBRA does not have strong focus in

customer validation. It was developed to only support requirements engineers [86] to

enable them express requirements in a variety of ways suitable for the problem domain. The

advantage our approach has is the involvement of the customers in the process from its

beginning.

c. KAOS

In the context of KAOS (Knowledge Acquisition in automated Specification)

project, the work on requirements focuses on a general approach for requirements

acquisition driven by high-level concepts such as goals to be achieved, agents to be

22

assigned, alternatives to be negotiated, etc. The underlying structure of the approach taken

has three main components: a conceptual model, a set of acquisition strategies, and an

acquisition assistant [2].

The conceptual model further involves three levels of modelling:

1. The meta level: refers to domain-independent abstractions and is used to model:

• Meta concepts such as Agent, Action, Entity, Relationship, etc.

♦ Meta-relationships that link meta-concepts e.g., Performs, Input, IsA, etc.

• Meta-attributes of meta-concepts and meta-relationships e.g., Load of Agent,

Postcondition of Action, etc.

♦ Meta-constraints on meta-concepts and meta-relationships

2. The domain level: refers to concepts specific to the application domain and is made

of concepts that are instance of the meta-level abstractions. For example in a library

system as a subdomain of resource management application domain, a borrower is

an instance of the Agent meta concept and CheckOut is an instance of the Action

meta concept. These concepts are linked also by links which are instances of the

meta relationships, e.g., Borrower performs CheckOut. Domain-level concepts must

also satisfy instances of the meta constraints.

3. The instance level: refers to specific instances of domain-level concepts

The meta model is represented as a graph where each node represents one of the

meta types (e.g., goal, action, agent, event, entity), and where the edges capture the

semantic links between such types. According to this modeling, the requirements acquision

process corresponds to some way of traversing such a graph to acquire appropriate

instances of the various nodes and links according to the underlying constraints.

Acquision process is governed by strategies telling which way to follow

systematically in the graph. An acquisition strategy is a composition of steps for acquiring

components of the requirements model as instances of the meta model components. For

example, the graph can be traversed backward from the goals to be satisfied by the system,

23

backward from the agents available in the system and their respective views, or backward

from a supplied set of scenarios. The strategy considered in [2] is the first one; goal-

directed.

The automated assistance provided is built around two repositories: a

requirements database, and a requirements knowledge base. The first maintains the

requirements model built gradually during the acquisition and can be queried normally. The

second one contains domain level knowledge and meta-level knowledge. The domain level

knowledge is organized into specialization hierarchy where requirement fragments for a

specific class of application can be inherited from more general applications and from more

general tasks. The meta-level knowledge concerns more general aspects like ways of

conducting specific acquisition strategies including tactics that can be used within

strategies e.g., "prefer those alternatives which split responsibilities among fewer agents".

This model is very rich and its meta part can capture requirements knowledge

for wide range of applications. One of the few drawbacks of this model is the complexity

of the underlying structure. This makes it difficult for the model and implementations based

on it to be used in effort reduction. Although the span of the process covered by our model

is wider (the whole life cycle) than that covered by that model, our model is simpler.

4. Deductive Database Approach

We have explored the use of deductive database model as a formal model for

representing, storing, and reasoning with requirements knowledge because the underlying

structure was seemingly promising. The idea was rejected for reasons to be explained later

in this subsection. A deductive database (DDB), known also as an expert database, or a

logic database, is a database that is managed by a deductive database management system

[12] (DDBMS) that supports the proof-theoretic view of the database. By applying the

deductive rules that comprise a part of the database intension (schema), additional

24

information can be deduced from the extension of the database. The main difference then

between non-deductive database and a deductive one is that in the first, querying a

database, we obtain facts that have been directly stored or combination of them. In a DDB

it is possible to obtain not only the facts directly stored, but also new facts using inference

rules along with other domain rules stored in the database. To preserve a correct state of the

database (deductive or non), we also include integrity constraints with the database that

serve to maintain the states of the database within a permissible set.

A proof-theoretic view of a database (opposed to model-theoretic view) [30] is

informally obtained by constructing a theory T that admits the extension of the database as

a unique model [14]. The construction of T is also based on the following set of

assumptions that govern query and integrity constraint evaluation of the database, deal with

the negative representation of facts, and make the universe to which queries refer more

precise:

1. The closed world assumption (CWA): facts that are not known to be true are

assumed to be false.

2. The Unique name assumption: individuals with different names are different

3. The domain closure assumption: there are no other individuals other than those on

the database.

A (definite) DDB is then defined as a particular first-order theory T along with a set

of integrity constraints. A definite DDB allows only function-free and Horn definite clauses

while an indefinite DDB allows only function-free non-Horn clauses including negative

clauses [45]. The CWA leads to inconsistency when used with indefinite DDB. For this

reason Minker [41] introduced a generalization of the CWA (GCWA) to deal with negative

information in the indefinite DDB. The theory T consists of the following proper axioms:

1. The unique name axioms.

2. The domain closure axioms.

25

3. Equality axioms which specify the usual properties of equality: reflexivity, symme-

try, and transitivity, and principle of substitution of equal terms. These axioms are

needed because other axioms use them.

4. The completion axioms that effectively represent the CWA.

5. The elementary facts axioms which is a set of ground atomic formulas each corre-

sponds to a tuple in a relation DB table.

6. The deductive laws axioms which is a set of function-free definite clauses. Definite

here means that these rules do not include implications with disjunctive conclusions

because they create indeterminacy. As an example of an indefinite rule, consider the

implication of the form a=$bv c, even if we know that a is true, we can ascertain

neither the truth of b nor the truth of c independently.

Under some assumptions and with the intent of obtaining an operational database,

some of the above axioms can be excluded or substituted by metarules, refer to [30] for

details. According to this scheme the evaluation of queries and satisfiability of integrity

constraints remains intuitively similar to conventional database schemes. A query in a DDB

is a first order formula (W =>) where W is termed the body of the query. Any free

variable in W is assumed to be universally quantified at the front of the query. An answer

to the query W(xv...,x) => where the Xj are free variables, is the set of tuples

(c(1,..., c ■) such that these set of tuples are derivable from the theory T.

An integrity constraint is a closed first order formula. A DDB obeys the integrity

constraints if and only if every formula of the integrity constraints set of axioms are

derivable from T, i.e., the integrity constraint is a logical consequence of the database.

Integrity constraints can be checked after database updates by running them as queries.

Thus if W is an integrity constraint, the database satisfies (violates) W if running W => as

a query succeeds (fails). The deduction capability of the DDB comes from the axioms set

26

of the deductive rules where tuples are not only those explicitly stored in the database, but

also those that can be derived using the deductive rules.

The DDB modeling relies on the first order logic as a knowledge representation

scheme where facts and relationships between facts are represented as logical formulas in

the database. The benefits of logic as a knowledge representation scheme include [65]:

1. Logic is precise and unambiguous.

2. Representation uniformity; facts, implications, queries, etc. are all expressed in the

same first-order language.

3. Operational uniformity where first-order proof theory is the sole mechanism for

query evaluation and the satisfaction of integrity constraints.

4. Generality of inference and proof procedures.

5. Well-defined semantics.

Despite these advantages, the use of logic as a representation scheme has three main

disadvantages [57]:

1. Although the representation capability of logic is powerful, it is limited (or the for-

malization process required is difficult) with respect to basic knowledge representa-

tion requirements. Standard first-order logic can not be easily used to represent such

real world knowledge as beliefs, defaults, and incompleteness.

2. Procedural and heuristic knowledge is difficult to represent in logic. Procedural

knowledge is critical for any integration of knowledge and data, particularly for

knowledge acquisition and manipulation.

3. Logic lacks organizational and modularity principles which are crucial for large and

complex applications.

When we started investigating the use of DDB modelling in the requirements

analysis domain, we were motivated by the capabilities the approach can provide:

1. The DDB being a database in the first place can provide the capability of storing,

retrieving and manipulating the requirements process knowledge which is classified

27

as data-intensive process.

2. Logic as the representation scheme in DDB provides unambiguous representation

of knowledge which is a crucial point to deal with in requirements analysis.

3. Within the context of DDB, it is relatively easy to detect inconsistency [28] and

contradictions that are difficult to do using other schemes.

4. Constraints can be easily modeled by considering them as special integrity con-

straints that have explicit representation in the DDB context.

5. Reasoning with the available knowledge to draw conclusions using inference capa-

bilities [88] is directly available by using a DDB. This capabilities provide a mecha-

nism to be used in providing the decision support for the requirements analysis

process.

However, one main point discouraged us from using DDB modeling in the

requirements analysis domain: only function-free formulas are allowed [66] in DDB as

explained above. This limitation hinders the representation and manipulation of more

general forms of knowledge instead of only constants and variables. Functions are excluded

in DDB models to have finite and explicit answers to queries.

5. CAPS Graph Model

Software evolution in computer-aided prototyping is essential. This comes from the

nature of the prototyping process [53]. Until agreed upon by stakeholders, a prototype is

subject normally to frequent changes. Therefore computer support for evolution is

important The CAPS graph model is a data graph model for evolution that records

dependencies and supports automatic project planning, scheduling, and configuration

management[48]. According to this model, the evolution process of a software system is

represented by a graph that at any given moment models the current and the past state of

the software system. A typical instance of that graph consists of software objects that

28

comprise the system configuration and the evolution activities (steps) applied to these

objects.

The graph model views a software evolution process as a partially ordered set of

steps. Each change in the system design from the moment it is proposed is performed

within the context of one or more steps. Steps have states that reflect the dynamic

progression of the change from the moment it is proposed until it is completed or

abandoned (rejected). When rejected, the history of the activity remains in the project

database. When completed, a step outputs new version or versions of the subject software

component that underlies the change.

An earlier and primary version of this model was developed within the CAPS

project [32], [33]. Luqi refined and elaborated the model in [47]. This same model was

further enhanced, augmented with a scheduling model, team coordination mechanism, and

implemented in [69]. We will return to this model for more detail in the next Chapter in the

course of the development of the requirements analysis and evolution model.

C. THE ROLE OF PROTOTYPING IN THE SOFTWARE

DESIGN PROCESS

Software process models refer to the activities involved in software development and

maintenance termed as the software life cycle. The waterfall model is the most well known

of these. Following are highlights of some of these models: [73], [74].

1. The waterfall model: This model views the software process as a series of consecu-

tive phases such as requirement, specification, design, implementation, testing and

maintenance phase.

2. Build-and-Fix model: In this approach a working system is rapidly developed, then

repeatedly modified until it reaches an adequate functionality. This model is used

where detailed requirements cannot be specified and where adequacy rather than the

correctness is the main goal of system designers

29

3. Incremental model: in the incremental model, a system is designed, implemented,

integrated, and tested as a series of incremental builds. A specific build consists of

code pieces from various modules that interact together to provide a specific func-

tionality.

4. Prototyping: This approach is similar to the build-and-fix model, but the main goal

is establishing the system requirements. This normally followed by an implementa-

tion of the requirements to obtain a production quality system.

5. Formal transformation: In this approach a system development is treated as formal

process that transforms the problem specification into the envisioned system in a

discrete series of steps. Each step in this process corresponds to the application of a

meaning-preserving transformation [83].

6. System assembly from reusable components: This approach uses the assumption

that systems are mostly made up of already existing components. This means that

the system development becomes an assembly rather than a creation process. How-

ever in our view the assembly process should be preceded by some other phases in

the design process to determine what reusable components fill a required function-

ality. This approach when combined with rapid prototyping greatly enhances the

software development process [19].

The Waterfall model of software development, is widely known and has been used

with some success on a wide variety of products, however there have been also failures

[74]. The Waterfall model as shown in Figure 2.3, introduced a phased approach that

produces a series of documents containing requirements, specifications, and designs before

detailed implementation of the system. The main problem with this approach is the

assumption that system requirements can be discovered and frozen before implementation.

This assumption has been found to be invalid in practice which may result in paying a very

expensive cost in terms of time and budget to fix errors detected late during the test phase

near the end of the project. This lack of any guarantee that the resulting system will meet

the customer's needs is the main encouraging point for using prototyping model.

30

The risk inherently associated with the waterfall model can be greatly reduced by

following the rapid prototyping paradigm. The purpose of software prototyping is to help

customers understand and criticize proposed systems and to explore the new possibilities

that computer solutions can bring to their problems in a timely and cost effective manner.

Prototyping model will be elaborated more in the following section along with an

operational project that employs this paradigm.

Requirements
t

i i Specification t
i i Design 1

i \ Implementatio t

t Testing
f

4 Maintenance

Figure 2.3 Waterfall Model

D. HOW PROTOTYPING CAN ENHANCE THE REQUIREMENTS

ENGINEERING PROCESS

The prototyping model of software development is based on an iterative guess/

check/modify cycle that relies on prototype demonstrations and customer reactions to the

demonstrated behavior of the prototype. The main goal of this iterative process is to breach

the gap between the customers' real needs and those same needs as understood by the

designers and expressed by the behavior of the demonstrated prototype. An important

outcome is a consensus about the requirements of the system to be developed before

expending any further effort on the other development tasks [50].

The software development process based on the prototyping model is shown in Fig-

ure 2.4. There are two main phases that can be identified in the prototyping model [54]:

31

prototype evolution and production code generation. The main purpose of the first phase is

to achieve a consensus on the requirements before investing any effort on implementation

and optimization. The second phase may not exist if the prototype is of a throw-away type

as we explain below. If it does exist, the main purpose of the code generation phase is to

generate an efficient implementation when the requirements are stable. Even after product

delivery, the prototype can be used to incorporate requirements changes into the working

system by doing other iterations through prototype evolution and code generation phases.

The prototype evolution phase includes the shaded activities in Figure 2.4. The pro-

cess starts with rapid analysis to determine an initial version of the requirements which is

used to design the prototype system. The constructed prototype may represent only a sub-

set of the requirements due to deliberate focus on critical aspects of a large system such as

time constraints in a real-time system. The behavior of the prototype is then demonstrated

to a group of the system stakeholders. The stakeholders may object because some aspects

of the demonstrated functionality do not reflect their needs or because some required func-

tionality has not been reflected at all. These user reactions are recorded and analyzed for

cost implication and the goals of the project sponsors, and possibly triggering review and

adjustment of these goals. A set of requirements changes is proposed based on the results

of this analysis. The designers then modify the prototype to reflect the subset of the pro-

posed requirements change that are approved by the manager of the prototype evolution

effort. The modified behavior of the prototype is then demonstrated again repeating the

same cycle until a consensus is reached on the customers' real needs.

32

In itial Goals

;:::i!; ;:I>:efeirjtnirie ",x:
Requirement«

Requirements
;■':■■:.: '••-■Prototype -j^-
;■::■' "::Syst&b:;:-

New-
Goals

T Problems

^-^ LTsrr ^x.
Vaftdat&n .

X Validated

Prototype

Performance Demonstrate
Prototype ?> ^

Requirements

Construct
Production

System

Modularization and Objects

System

Production
Use

Figure 2.4 The Prototyping Process Model

The reader should have noticed that the prototype evolution phase of the prototyping

process includes the three main tasks of requirements analysis: acquisition, functional

specification, and validation.

1. Prototyping Approaches

Prototyping is currently practiced using one of two approaches; throwaway or

evolutionary [54]:

33

a. Throwaway

The main purpose of a throwaway prototype is to be used as a tool for

requirements analysis. After an agreement has been reached on what the customers' real

needs are, the prototype is thrown away. In spite of the apparent disadvantage of wasting

the effort, this approach may be useful in situations such as demonstrating the feasibility of

new approaches or to convince a potential sponsor to fund a proposed development project.

Other than that, the use of this approach is driven by the inadquacy of tools sophisticated

enough to make use of the prototype by providing the required support.

b. Evolutionary

The availability of powerful supporting tools encourages practicing the

evolutionary prototype approach. In this approach the prototype evolves through a series of

versions. Each version except the first one is designed using the previous version(s) along

with the feedback from analyzing the user reactions to the behavior of the demonstrated

prototype. After a number of iterations, the prototype behavior converges to an acceptable

behavior from the customer side. The number of iterations depends on many factors such

as the complexity of the problem on hand, the skill of the designers and their knowledge

about the problem domain, etc. Supported by the appropriate tools, the prototype or parts

of it can then be incorporated into the code production process of the system development

Examples of such tools are tools that do the necessary adjustments and transformations to

generate and optimize code aided by other tools to e.g., lookup and retrieve reusable code

modules from a software database to fit some functionality of the proposed system.

E. OVERVIEW OF CAPS

The Computer-Aided Prototyping System (CAPS) [49] is a software engineering

collection of tools for developing prototypes of real-time systems [52]. CAPS is an

environment which automates the shaded boxes in Figure 2.4. It is useful for requirements

34

analysis, feasibility studies, and the design of large embedded systems. CAPS is based on

the Prototype System Description Language (PSDL) [51], which provides facilities for

modeling timing and control constraints within a software system. CAPS is a development

environment, implemented in the form of an integrated collection of tools, linked together

by a user interface.

A CAPS prototype is initially built as a CAPS data flow diagram and a

corresponding PSDL program. The CAPS data flow diagram and PSDL program are

augmented with timing and control constraint information. This timing and control

constraint information is used to model the functional and real-time aspects of the

prototype. The CAPS environment provides all of the necessary tools for engineers to

quickly develop, analyze and refine real-time software systems. The general structure of

CAPS is shown in Figure 2.5.

The user interface provides access to all of the CAPS tools and facilitates

communication between tools when necessary. The tools as shown in the figure are grouped

into four sections, Editors, Execution Support, Project Control and Software Base. Details

of the CAPS tools can be found in [49], in the following we give brief description for these

tools.

35

User
Interface

1
J \ I. 1

Software
Base Editors Executior

Support
. Project

Control

\ 1
\

PSDL Editoi Ada Editor ECS Merger

'

v ' v
Translator Scheduler Compiler

Figure 2.5 CAPS Development Environment

1. Editors

CAPS includes a number of different types of editors, the PSDL Editor is the heart

of CAPS prototype design. This editor consists of 3 separate parts: the Syntax Directed

Editor, the Graph Viewer, and the Graphic Editor. This tool allows the designer to create

the CAPS data flow diagram and PSDL program, and assign all timing and control

constraints to prototype components. CAPS also provides a selection of text editors

facilities. Prototype designers can choose from vi, emacs and the Verdix Ada Syntax

directed editors for editing Ada programs. The CAPS user interface provides a convenient

file selection lists based on the currently open prototype.

36

2. Execution Support

The Execution Support group of utilities includes a translator, a scheduler and a

compiler. The CAPS translator converts a PSDL program into compilable Ada packages

which implement supervisory aspects of the prototype. The translator expects a complete

PSDL program as an input, and creates several packages which make up, in part, the

supervisor module of the prototype. The Ada implementation packages for the leaf

components of the prototype components structure referred to as atomic operators are not

generated by the translator. These must be either extracted from the software base, or

custom-made by the designer.

The CAPS Scheduler is the tool responsible for determining the schedule feasibility

for prototypes based on timing constraints assigned by the designer to the components of

the prototype. Information is provided to the scheduler via timing constraints from the

prototype's PSDL program. A prototype must be translated before it can be scheduled, and

scheduled before it can be compiled. Upon scheduling a prototype, CAPS provides

schedule diagnostic information which can be analyzed and used to direct timing constraint

modifications.

The current version of CAPS uses the SunAda compiler. The compilation process

is completely automated via the "Compile" command provided in the "Exec Support" pull-

down menu in the CAPS User-Interface.

3. Project Control

Currently, the Project Control section of CAPS comprises two tools; the Evolution

Control System (ECS) [69] and the Merger [18]. The ECS is a system that supports

distributed prototype development in a team environment. The ECS makes use of a design

database (DDB) for persistent storage of prototype development data. The ECS supports

maintenance of a designer pool from which to draw for prototype development tasks.

37

Within the ECS, prototype development is modeled as a series of steps, which the project

manager creates. These steps are automatically scheduled and assigned to available

designers.

As part of our work, we extend the functionality and broaden the scope of the ECS

to include the process of capturing the user reactions to the behavior of the demonstrated

prototypes, synthesizing these reactions into issues to be resolved, and hence automatically

generating activities to analyze the alternatives available and carry out requirements

changes if necessary. The requirements changes automatically induce a chain of activities

to propagate the changes down to the affected parts of the system design and

implementation. These propagated changes are carried out by the ECS.

The CAPS Merger provides automated prototype change-merging. Based on

slicing theory, applied to PSDL programs, the Merger automates the combination of two

separate modifications to a base prototype. The Merger detects and warns of conflicts

between the two changes to be merged. If no conflicts occur, or if they are overridden, the

Merger creates a PSDL program for the newly created prototype which incorporates the

changes of each of the modified prototypes.

4. The Software Base

The CAPS software base and its associated retrieval mechanism provide access to

a repository of reusable Ada and PSDL components. The software base allows a designer

to browse as well as query its components. Queries to the software base can be in the form

of keywords or PSDL specifications. In the current release of CAPS, the software base

matching mechanism is based on parameter matching.

F. OUR EXTENSIONS TO CAPS

Our work extends the capability of CAPS in multi dimensions. It extends the

functionality and scope of the ECS to include the requirements evolution and analysis

38

process within the context of a formal model. The current version of the ECS addresses

only the design and implementation aspects of the system. With our extensions the early

part of the prototyping process becomes more formal. This is the part mainly concerned

with the activities of the user validation and the requirements determination driven by the

prototype demonstration. See "The Prototyping Process Model" on page 33.

Our extensions to the CAPS graph model enables linking requirements to the

system design and implementation to provide the automated support to expose the

consequences of the requirements changes on the system design. The extensions and

enhancements we develop support recording, analyzing, and resolving customers'

concerns.

Based on our model and inference rules we also enables the augmentation of CAPS

with a decision support mechanism capable of providing the automated support for

establishing relationships, specifying and enforcing constraints, generating and evaluating

alternative requirement changes, and maintaining consistency system wide.

We also provide automated support based on a design rationale capture model

integrated with a decision making formalism. The design rationale capture model provides

the automated support to:

1. Track the development history of the system prototype.

2. Support the design of new needs.

3. Maintain justification for design decisions.

4. Support the reuse of design artifacts.

5. Can be used as an aid to study designs.

The decision making formalism provides the automated support for stakeholders to

evaluate and choose among alternative requirements changes. This support includes the

formal quantification of the stakeholder judgements, and combining individual judgements

into group decision. This same formalism can support analysts and designers to resolve

design issues or analyze design alternatives. It can also support managers to set priorities.

39

Our work also provides CAPS with a conceptual and architectural design of a

design database capable of:

1. Representing the prototype design entities and relationships naturally.

2. Providing efficient storage and management of the process knowledge.

3. Establishing feasibility of practically implementing the proposed decision support

facilities.

An important enhancement to CAPS is the one enabled by our new implementation

model. This new model:

1. Removes the main difficulties in implementing the conceptual design of the design

database.

2. Provides a safe and efficient way to communicate Ada and C++.

3. Builds a partial Ada binding for ONTOS.

4. Reduces coding effort.

5. Simplifies code design.

6. Increases the productivity and uniformity of database applications development

within CAPS.

7. Increases usability of code fragments.

40

HI. A MODEL FOR REQUIREMENTS ENGINEERING

VIA RAPID PROTOTYPING

A. THEORETICAL BASIS

Rapid prototyping is intended mainly to firm up user requirements in an interactive

way between the prototype designers and the customers. Current models of this process are

not formal and detailed enough to provide much decision support for the requirements

analysis aspects of the process. Specifically, the activities that start with the prototype

demonstration and end by responding to the user responses to evolve to the next version of

the prototype lack automatic support for many planning, control, coordination, and analysis

activities that help both the designers and the managers. The intended support for

responding to requirements changes should be provided within the context of a formal

model rich enough to support the following aids and capabilities with a reasonable degree

of automation:

1. Planning the prototype demonstration.

2. Mapping user criticisms into the primitives of a formalized model to be analyzed

and elaborated so that they can be synthesized into a set of issues to be resolved.

3. Analyzing alternatives available and choosing among them to make necessary mod-

ifications in the design to resolve the open issues.

4. Creating analysis activities as well as planning and executing these activities when

the needed resources are available.

5. Controlling the evolution of the requirement components which are directly

affected as well as propagating the implied effects of the changes and configuring

the whole requirements hierarchy accordingly.

6. Propagating any changes in requirements to the affected parts of the system design

and implementation.

7. Coordinating the effort of the design team.

8. Controlling versioning and configuration management to faithfully reflect the

41

intended effect of the dynamic ongoing changes.

A formal model that can encompass such a large range of decision support and

provide the vehicle for representing the process knowledge can be partially provided by the

graph model introduced in [47]. This model represents the evolution history, current state,

and future plans for evolution as well as dependencies between the parts of the model. The

graph model can cover multiple systems that share components, alternative variations of a

single system, and a series of configurations representing the evolution history of each

alternative variation of a system. This same graph model was augmented and enhanced in

[69] to be used as a conceptual model for developing an Evolution Control System (ECS)

that provides some of the support functionality. Currently the ECS supports activities 7 and

8 above. The ECS can also provide the automatic support for incorporating and propagating

changes in software design components. However the automation provided by the current

version of ECS does not directly address requirements or the upstream portion of the

process. In the following subsection we summarize the original graph model and outline

some enhancements to address the issues outlined above. We use these enhancements to

provide additional support for requirements analysis in the context of rapid prototyping.

The decision support functions enabled by these enhancements to the model is discussed in

Chapter IV.

1. The Primitives for a Conceptual Model

The graph model [47] is composed of two main types of elements: software

components and evolution steps, called components and steps below. Components are

immutable copies of software objects that cannot be automatically generated on demand.

Components can be of many different types. Both components and steps can be

decomposed into hierarchies of like parts. Steps represent activities that comprise the

analysis, planning, coordination, and design implementation of a request for a change. In

our context a request of a change is derived from the justifiable user responses to the

42

demonstrated behavior of the prototype. Evolution steps have the following properties

[47]:

1. Every step is either a top level step or part of a top level step.

2. A top-level step represents the activities of initiation, analysis, design and imple-

mentation of one change request.

3. A step is composite if it has substeps and is atomic otherwise.

4. The inputs and outputs of a step are components.

5. An atomic step produces at most one new version of a system component in [47].

This restriction is relaxed in [69] to account for the cases where a designer who has

been assigned an atomic step needs to decompose the assigned module, thus creat-

ing several new subcomponents.

6. The inputs and outputs of a composite step consist of the inputs and outputs of its

substeps.

7. The model includes steps that have not been completed. Some of these are proposed

as hypothetical alternatives, are in progress, or have been abandoned before comple-

tion.

8. Completely automatic transformations are not considered to be steps and are not

represented in this version of the model.

9. A scope that identifies the set of systems and variations to be affected by the step is

associated with each evolution step. The scope is used to determine which induced

evolution steps are implied by the approval of a change request.

2. Input to Steps

Inputs to an evolution step are classified as either primary or secondary {non-

primary).

a. Primary Input

The primary input to a step is the previous version of the component being

updated by the step. An input to a step was originally defined to be primary if and only if

43

it is the previous version of the same variation of the same object as the output of the step.

Variations of an object represent parallel lines of development for the object that

correspond to alternative design choices. The original definition restricts the output of a

step to be in the same variation line as the step's input. In [69] this restriction was relaxed

to allow an input to a step to be primary whether the output version is on the same variation

as the input of the step or splits off a new variation. This modification makes some object

versions belong to one or more variations to help trace the evolution history of each

variation to the initial version of each object. We further relax the definition to allow more

than one input to be primary to cover the case where several parallel lines of development

are combined by merging operations.

b. Secondary Input

An input to a step is secondary if the designer needs read-only access to the

component to accomplish the step. This kind of input is determined from the dependencies

that link the primary input of the step and other model components.

3. Induced Steps

One of the key contributions of the model is to propagate changes in all parts of the

system consistent with semantic dependencies on system parts affected by a change. When

a step modifies a component, it induces other steps to carry out the changes in every other

component affected by the original change. These induced steps are automatically

generated based on dependencies between the being modified component and other

components. The resulting induced steps are further analyzed by the manager and are

adjusted to account for newly created and/or deleted structures.

44

4. Dependencies

Since both components and steps can be composite, the graph model provides

primitives for representing the decomposition hierarchies of composite steps and

components. Other kinds of dependencies among the nodes of the graph either of the same

type (component-component or step-step) or different type (step-component or

component-step) can be represented as edges of the graph, see section B.2 of this Chapter.

5. Step States:

Each step is in one of six states listed below. Transitions from one state to another

corresponds to management decisions. Refer to [47] for the state transition diagram, its

augmentation [69], [70], [71] and rules for determining implied transitions of substeps.

1. Proposed: The initial state of a newly created step. In this state a step is subjected to

cost and benefit analysis.

2. Approved: In this state, the work to be accomplished by the step has been approved

by the management and scheduling attributes such as priorities, required skills, and

effort estimates are determined.

3. Scheduled: In this state, the step has been scheduled for implementation and

expected starting and finish times are calculated.

4. Assigned: In this state a step is assigned to a designer and the work is in progress.

5. Completed: In this state the output of the step has been verified, and a frozen version

has been entered into the project database.

6. Abandoned: This state represents a step cancelled before it has been completed. It is

reachable from all other states except the "Completed" state.

We have kept our extensions to the original model minimal to preserve its

simplicity. The enhancements have been necessary to capture information that is essential

for carrying out the requirements analysis tasks we are investigating. As we describe in the

following sections, the enhancements add new types of nodes, identify more software

45

component classes different in their semantic contents, introduce another kind of step, and

identify more relationships.

B. THE REQUIREMENTS EXTENSION OF THE GRAPH MODEL

Our model extends previous work to formalize and support the process that

connects criticisms elicited by prototype demonstration to the changes in the prototype

design. The main activities in this process include the tasks of planning and coordination

of the prototype demonstration, recording and analyzing user responses to the

demonstration and generating the activities to change the affected requirement

components. These activities will automatically trigger a cascaded change according to the

semantic or other dependencies that tie the system structure. Linking the criticisms into the

model also serves to record and refine design rationale. Design rationale can be used in

many ways, e.g., for redesign when perceived goals change. The rest of this section

describes the extended model.

1. The Graph Nodes

The node types of the graph are refined as follows:

1. A new type of node represents the persons directly involved in the process either

from the customer side or from the design team and management side.

2. Two kinds of steps are distinguished: analysis and design steps.

3. The class of software components is broadened to include more types which differ

only in the semantics of their content attributes.

a. Analysis Vs. Design Steps

The new model distinguishes two kinds of steps: analysis and design steps.

While both share the general properties and characteristics and are subject to planning,

scheduling, control, and task assignment activities, the following semantic differences are

identified:

46

1. Analysis Steps: address requirements and are controlled by the design team manager

or analyst. Analysis steps are mainly concerned with:

• Preparation for the prototype demonstration, which includes choosing concerns

to emphasize and scenarios or test cases.

• Analyzing and refining the set of criticisms posed by the customers in reaction to

the behavior of the demonstrated prototype.

• Establishing the link between the refined set of criticisms and issues they address.

This activity may lead to the generation of new issues and may change existing

ones. Issues are questions that must be resolved to determine the requirements.

• Establish the links between the set of issues and the requirement components

which are affected by the issues. This activity may lead to the generation of new

requirement components and/or modify existing components

• Provide information that assists in determining the alternatives (if any) available

for resolving an issue.

2. Design Steps: address the design and implementation of the prototype, controlled

by the manager and implemented by the designers. Previous versions of the model

assume all steps are design steps. Design steps are mainly concerned with imple-

menting the actual changes in the prototype design induced by a set of requirements

changes.

This distinction was introduced primarily because management approval of an

analysis step usually does not automatically imply approval of the implementation effort

corresponding to the proposed requirement changes resulting from the analysis step,

especially if more than one alternative is proposed as a result.

Additionally, all analysis steps associated with responses to the same

demonstration must complete before any design step can start. This is to ensure that

interactions among criticisms elicited by a demonstration have been determined before

commitment to particular requirements changes for the next demonstration. Moreover,

analysis steps are subject to a serialization constraints to guarantee that demonstration step

47

completes before the issue analysis steps can start, and the issue analysis steps all complete

before any requirements analysis step can start. This serialization is necessary because the

decomposition of the next step depends on the output of the preceding step. See "The

Process" on page 52.

A related issue is the choice between analyzing criticisms each within a separate

substep induced from a top level step or analyzing all criticisms within the context of one

analysis step. We prefer the second option where all criticisms are analyzed within one

activity because analyzing each in isolation from the rest makes it difficult to check for

contradictions and redundancies, and to properly account for interactions between

requirements changes.

b. Software Components

Our model distinguishes among software component classes that represent

customer criticisms to the prototype demonstration, issues to be resolved, requirement

components, specification modules, and implementation modules. These components have

the same attributes but differ in the semantic interpretation of their content attributes.

2. Relationships

The edges of the graph represent the different relationships that relate the model

elements to each other. These relations as well as their inverses are important for the

application of the model. Figure 3.1 depicts the relationships among different classes of

components. We distinguish "user" as a specialization of the Human type because the

analysis process is initiated by user criticisms to the demonstrated prototype and because

users (unlike designers) are not assigned responsibilities for carrying out evolution steps.

Some other types of relationships will be introduced in Chapter V. These

relationships mainly link the issue to be resolved with the stakeholders, their individual

positions, justification arguments, alternatives available for deliberation, criteria for

48

judgements, and the final group decision in the form of a change request. We discuss all

these relationships in the course of extending and enhancing the IBIS model to give it more

expressive power. The enhancement also quantify judgements using IBIS.

Figure 3.1 Dependency Diagram

1. PartOf: connects objects of the same type and represents the decomposition struc-

ture of software components or steps. The inverse relation is called HasParts.

2. UsedBy: links two components of the same subclass or different subclasses. This

relation is intended to mean that Object Y is UsedBy X if the semantics or the imple-

mentation ofX depends on, is affected by, or uses the semantics ofY. The inverse

relation is called Uses.

3. Primary Input: links an object to be updated to step that will realize the new version

of the object.

4. Secondary Input: links an object to the steps that need read-only access to the

49

object.

5. Output: links a step to its output.

6. Affects: links a criticism to an issue or an issue to a requirements component that it

affects. This relationship is a specialization of and implies a UsedBy relationship.

Affects relations represent dependencies that are explicitly declared by analyst or

designer, rather than those calculated from other relationships or from the contents

of the components.

7. Poses: links a user to a criticism he poses.

Some of the objects and relationships of our model as given in Figure 3.1 above are

similar in interpretation to the IBIS model in which a given set of issues are to be resolved

in the presence of different positions justified by arguments. However, the original IBIS

model and its extensions implicitly assume that the set of issues are independently

specified. In our model, issues are created using criticisms posed by the stake holders. One

other basic difference is that in our model issues are related to design artifacts from the

highest to the lowest level, thus it spans the whole life cycle of the system under

development not only the deliberation process. Some other differences follow:

1. In IBIS model and its extensions, the process stops once an alternative is selected.

In our model, an alternative is selected based on an analysis process and a proposed

plan is automatically generated to implement the resolution. Within the context of

this plan, the consequences of the proposed implementation are exposed for further

analysis and adjustments by the management.

2. Our model makes better use of the knowledge captured during the process in evolv-

ing requirements and design consistently into new versions that more closely

approximate the user real needs.

3. The demonstration process provides a better context for the elicitation process

where the demonstrated examples of system behavior stimulate customer reactions

and judgements (what you see is what you get).

50

In Chapter V we will return to the IBIS model where we improve it to alleviate these

and other drawbacks. Our improvement provides more representation power to the IBIS

model by introducing necessary types and relationships. These new types explicitly

represent the outcome of the deliberation process. They allow the representation of

alternatives, criteria, group decisions. More importantly, we will combine it with an

improved formal technique that we will use to quantify stakeholder judgements.

3. Formulation of The Model

Our model is based on a directed graph G (V,L) where the set of vertices has three

disjoint subclasses V = {H uSuC} and L is the set of links (edges) of the graph. H

models the set of persons (users and designers) involved in the process and S models steps

with both their variants. The class C represents software components and has the following

subclasses which have the same attributes and relationships but whose text attributes have

semantically different interpretations:

1. P: The entire system (prototype) to be demonstrated.

2. R: The set of criticisms generated during the demonstration of P.

3.1: The set of issues affected or addressed by the criticisms; each issue is either gen-

erated during the current demonstration or evolved from one that already exists as a

part of the demonstration history.

4. Q: The set of requirement components organized in a hierarchical structure. Each

requirement is either newly created during the process or evolved from a previous

version.

5. D: The set of the of PSDL components that represent the design structure of the pro-

totype. This subclass includes specification, and implementation structures.

6. T: The set of test scenarios that is used to test the system behavior as perceived by

the customers.

51

4. The Process

The associated process can be viewed as two consecutive phases: analysis and

design change phase, as the simplified schematic in Figure 3.2 shows.

Analysis Phase Desian Chanae Phase

1
Demonstrate
Prototype and

record criticisms

Modify affected

specification

♦ +
Synthesize issues

from refined
criticisms

Modify affected
implementation

+
Determine

affected
requirements

1
Identify alterna-

tives for issue res-
olution

{
Analyze and
resolve issue

♦
Modify affected

requirements

Figure 3.2 Process Schematic Diagram

52

In the analysis phase, the customer reactions to the demonstrated behavior of the

prototype are captured and used to synthesize a set of issues to be resolved. The

requirement components to be manipulated during the resolution process are determined

and the various alternatives available for the resolution are identified. Issues are resolved

by choosing among these alternatives. This phase ends by modifying the affected

requirement components. In the design change phase, the actual changes in the affected

design specifications and implementations are carried out.

Typical model elements affected by the process are illustrated in Figure 3.3 below.

a. Demo Step

The analysis process associated with the demonstration activity proceeds as

follows: at the planned date of the demonstration, having the prototype and the test

scenarios ready, the prototype is demonstrated in the presence of customers. The result of

the demonstration is a set of criticisms posed by the customers in response to the

demonstration. In a demonstration analysis substep, these criticisms are recorded, reviewed

by the customers for accuracy, and entered into the project database along with amplifying

information. The following tasks are associated with this substep:

1. Record the set of the generated criticisms augmented with analysis information

such as relation to other criticisms, justifications, agreement with the user goals and

constraints, and any elaboration that may clarify the customer needs. However the

raw part of the criticism as it is cited by the user is kept separate and preserved

intact for future reference.

2. Establish the link between users and the generated criticisms. This link is used to

trace contradictions back to conflicts of interest between user groups, to focus nego-

tiations, and guide priorities.

3. Analysis of criticisms for clarity, plausibility, and consistency.

53

UsedBy/Affects

PartOf
Step Primary Input/
Step Output

mssss^^^ Step Secondary Input

Figure 3.3 Schematic Model of the Analysis Process

b. Issue Analysis Step

When the manager advances the status of the demonstration analysis step to

completed, an issue analysis top level step is automatically generated. This step works on

the set of criticisms recorded at the current demonstration and the set of issues from the

previous demonstrations. The main task of this step is evolving to a new set of issues

54

assembled using the generated set of criticisms and the issue set from the previous

demonstrations. Within the context of this analysis step the following analysis tasks are

identified and resolved:

1. Merging, generalization, and reformulation of similar criticisms.

2. Dividing the set of criticisms into subsets each of which addresses one issue. These

subsets are not necessarily disjoint to account for cases where one criticism

addresses more than one issue.

3. Manually linking each criticism to the issues from previous demonstration that it

addresses (if any).

4. Generalizing or formulating the statement of any of the existing issues (if neces-

sary) to adapt the issue to the subset of criticisms linked to the issue.

5. Generating new issues if any of the criticisms are not linked to any issue.

The output of this step is a refined set of issues to be resolved. To resolve these issues,

each is considered separately within the context of an automatically generated analysis

substep as part of the requirements analysis top level step.

c. Requirements Analysis Step

This top level step is automatically generated at the completion of the above

step. The primary input of this step is the set of requirements affected by the synthesized

issues. The issues themselves are the secondary input. This top level step has a number of

substeps equal to the number of the synthesized issues. Within the context of this step

issues are linked to the requirement components they affect in the existing requirements

hierarchy and to newly created requirements if needed. Each issue is resolved within the

context of one of the substeps. A substep of these is concerned with:

1. Generating new requirements if the issue addresses a missing requirement.

2. Exploring the availability of different alternatives for resolving the issue from the

requirement components (either existing or proposed) affected by the issue.

55

3. Initial mapping of the new affected requirements into the existing design artifacts.

4. Generating relevant information that assists stakeholders in their judgement on the

issue resolution.

5. Resolving the issue which includes:

• The stakeholders debates to choose among alternatives.

• The group decision as to which alternative(s) to select.

• A change request that maps the group decision into required changes in the

requirements and accordingly in the system design consistently.

All these tasks are explained in detail in Chapter VIII. as part of a case study. The

fourth task is explained in detail in Chapter IV. The last task is the subject of Chapter V.

One way of exploring the availability of different alternatives to resolve an issue

in our context is by examining the Affects link between an issue and the set of requirement

components it affects (either existing or proposed). These alternatives can be derived from

this set of requirement components (Call it Qaffected)- If this set can be divided int0 a

number of n independent subsets (Call it Qj), the issue has a number of alternatives equal

to n. An issue can be resolved by updating the requirement components of only one of these

subsets while keeping the other subsets intact.

This means that according to the value of n, we have two cases:

l.n = l means that all requirement components affected by the issue are to be updated

for resolving the issue; no other options are available.

2. n > 1 means that the set of the affected requirement components can be divided into

subsets where the issue can be resolved by modifying the requirement components

in only one of them. Each of these subsets represents the basis of an alternative to

resolve the issue.

56

If ri are the requirement components in Qaffected and the latter's cardinality is m,

the first case implies that all (r1 A r2 A ... A rm) must be updated together to resolve the

issue.

The second case implies that any Qt can be updated to resolve the issue, where:

a. Qi= {rj,r2,..,rß,md

b. 1 < j < Cardinality(Qaffected) , and

C KjQi = QAffected-

Some or all of the requirement components in Qaffecte(i may already exist as part

of the requirements hierarchy. Others may be newly proposed components accounting for

e.g., a missing functionality.

The decision making in the first case deals with selecting the right statement of

each affected component. If differences arise, a formal debate is conducted to reach to an

agreement. The debate among stakeholders is concerned mainly with what the updated

requirements would be and the impacts of the proposed changes on their goals. The detail

of such a process is given in Chapter V.

The second case requires more work and analysis. Each identified subset bears

the basis of an alternative candidate to resolve the issue. The choice among these

alternatives will be explored in Chapter V within the context of a formal technique.

For example, in demonstrating a prototype that models a generic CJI system

[46], one of the criticisms posed is concerned with timing error from the PSDL module

representing weapon status, meaning that the maximum execution time (MET) of this

module (PDSL operator) is violated. The issue synthesized from this criticism is "Timing

constraints violation". To resolve this issue, two alternatives are available: changing the

timing requirements for all time-critical modules with the intention of increasing the MET

57

of the weapon status module and hence decreasing the METs of the other modules, or

changing the hardware speed requirement of the real system to increase the processor

speed. The first alternative affects a subset of requirement components that include the

timing requirements for the weapon status and other subsystems (many requirement

components). The second alternative affects only one requirement component: the one that

specifies the hardware requirement of the intended system. Choosing that alternative

implies that all requirement components in the associated requirement subset will be

manipulated to implement the chosen resolution. Although the second alternative takes less

effort, the preference process is done within the context of other deciding factors. For

example it may be impossible due to budget constraints to upgrade the hardware

architecture to provide the desired speed. In Chapter VIII we provide a more detailed

example.

To assist stakeholders in the selection process, the decision support mechanism

gathers relevant information related to each alternative. The dependency graph of the

current design is used to support this process. This information is then used to attribute each

alternative. Values here are rough estimates and are only used as indicators to guide the

judgement of the stakeholders.

The information is gathered by traversing the portion of the dependency graph

from the affected subset of requirement components down to the leaves of the dependency

graph (implementation modules), following UsedBy and PartOf links. The kinds of

information gathered are:

1. The number of the specification modules (PSDL operators) affected (and hence the

number of implementation modules).

2. If any additional specification modules are required (and hence any additional

implementation modules).

3. The availability of designers with the required expertise level and field to carry out

58

the work required by the resolution.

4. Optionally, the availability of reusable components in the software base for any new

implementation modules needed as a result of the proposed change may be

explored.

d. Design Change Step

The analysis phase ends by approving one or more alternatives for resolving

each issue. The result is a set of approved change requests to be prototyped in the design

change phase. Each of these changes implies a hierarchy of design steps through a chain of

induced steps from the requirements down to the implementation levels, following the

UsedBy and PartOf relations. At this stage, for each of the approved change requests, the

affected subset of requirement components are known for each issue. This induces a set of

implied design steps, one for each affected component.

The change propagation from the affected requirements components down into

the design hierarchy is performed within the context of an automatically created set of

steps. Each of these steps takes one of the specification modules linked to an affected

requirements component as a primary input and the requirement component as a secondary

input and outputs a modified version of the specification module. Each of these steps can

spawn another set of induced steps that modify the affected implementation modules. Each

such induced step takes one of the affected implementation modules as a primary input and

the affecting specification module as a secondary input and outputs a modified version of

the implementation module.

59

60

IV. DECISION SUPPORT MECHANISM BASED ON THE MODEL

The kind of decision support and automation provided assists managers and

analysts in making decisions but does not replace them. Managers can always override the

generated values, change status of the different activities, add or remove relationship

instances, and choose options rejected by the decision support mechanism. For example, in

most cases affected modules are calculated successfully from the dependency graph using

the existing relationships. However, initially manual intervention is needed to build these

relationships. Also because of the process dynamics and the ongoing concurrent changes,

components are added (deleted) to (from) the system which requires the intervention of

managers. They first review the result of the automatic computation and then adjust the

computation result (if necessary) to reflect these changes. This makes the process always

under the control of the project managers and the analysts for human judgement and further

considerations.

A. TYPES OF DECISION SUPPORT PROVIDED

The types of decision support provided span a wide range of specific tasks and

activities. The automatic support and reasoning facility the system provides is based on a

set of rules to be used in automatically deciding the right action to be taken. Actions are

concerned primarily with the following tasks and activities:

1. Computing or inferring relationships from given ones.

2. Automatically propagating change consequences to other parts of the system.

3. Assisting in establishing consistent planning and control.

4. Coordinating task implementation.

5. Controlling status of the analysis and design activities.

6. Providing support for monitoring and adjusting the execution of the plan.

61

This section outlines types of decision support provided based on the conceptual

model and the associated set of rules and constraints that governs the process. We use the

notations given in Table 4.1 to present some of the rules:

Notation Meaning

s/S/Si Analysis or design step.

rlRlrt Criticism.

illlii Issue.

qiQiQi Requirements component.

piPiPi PSDL component.

v/V/Vi Version of any component.

Table 4.1: Notations

1. Automatic Generation of Analysis and Design Activities.

Approval of an analysis or a design step that considers a component for change

triggers an automatic process that computes the other affected components, and generates

a substep to consider each of these affected components. The generated substeps inherit the

parent's step "Approved" state. Managers can intervene to adjust the result of this

mechanical process by adding to or deleting from the affected components set to account

for cases of missing or existing relationships that the automatic process did not consider.

The manual adjustment also requires creating a substep for each newly added affected

component and abandoning all substeps corresponding to all deleted affected components.

Depending on the status of the parent step S, the rules associated with this mechanical

process are [69]:

1. If S is "approved" then add the corresponding substep.

2. If S is "scheduled" then:

• include the effects mentioned in 1 above, and

• modify the dependency graph to reflect these changes, and

62

• recalculate the schedule according to the modified graph.

3. If S is "assigned" then:

• include all the effects mentioned in 2 above, and

• suspend any assigned steps that become dependent on any of newly added steps,

and

• assign any of the steps that become ready.

2. Dependencies computation

This includes computing or inferring relationships from given ones and updating

these relationships as more information becomes available. Examples of such

computations are as follows:

1. Computing the set of components affected by the change to the primary input com-

ponent of a step.

2. Computing the set of secondary input components of a step.

3. Computing the set of usedBy components of a step.

Rules that govern this computation are as follows:

a. Affects Rule

For any two versions v and vl, if v affects vl then v is used by vl.

Rule:

ALL(vvl: V:: (v affects vl) => (v usedBy vl))

This rule is used to derive and compute the usedBy relation from the affects

relation. This rule is illustrated graphically in Figure 4.1. For example v may be an issue

that affects a requirement component vl. If we are to modify vl by a step s, we need a

read-only access to v. Hence v must be one of the secondary inputs to s. But since the

automatic computation of secondary inputs is based on the usedBy relation, changing

affects relation into usedBy relation by the above rule is necessary and valid transformation.

63

Figure 4.1 Graphical Representation of the Affects Rule

b. VsedBy Rule

For any two versions v, vl and a step s, if v is one of the secondary inputs to s

and vl is one of the outputs of s then v is used by vl.

Rule:

ALL(s: S, v vl: V:: (v e secondaryJnput(s)) & completed(s) & (vl e output(s)) =$>

(V usedBy vl))

This rule adds to the above one in computing the usedBy relations among the

different elements of the system. These elements can be objects of different type

components or can be objects of the same type component as the next rule shows. This rule

is used mostly in the initial building of the usedBy relation. usedBy is built from:

• The Affects Relation as explained above.

64

• The PartOf relation as we explain in the next rule.

• The secondary input set of a step.

The last case occurs in a situation where for, example, a manager reviews the

task associated with a step. He may see that a read-only copy of some version is needed to

complete the step task. Therefore he adds this version as one of the secondary inputs to the

step. This version is not originally linked to the primary input of the step by usedBy relation.

Otherwise it would have been computed by the automatic process as one of the secondary

input to the step. That is why this rule is necessary to account for such situations.

/""~~\ „ ^ /■—X f ASec.
s

Output/ . \
"-►(vl)

V_>/ V_^/

I
usedBy Rule

I
,r \used*yi vi

Figure 4.2 Graphical Representation of the usedBy Rule

c. PartOf Rule

For any two requirement components q and ql, if ql is PartOf q then q is

usedBy ql.

65

Rule:

ALL(q ql: Q :: (ql PartOfq) => (q usedBy ql))

This rule has another variant that works on the PSDL hierarchy. In [69] it was

assumed that in the case of PSDL specification modules, children are used by their parents.

More specifically, the usedBy relation links a submodule specification to its own

implementation as well as to the specification and implementation of its parent module.

This assumption is not always correct Refer to section A.2.f of this Chapter for more

elaboration.

I
PartOf
Rule

I

q: Requirement Component
q^: A requirement Subcomponent of q

Figure 4.3 Graphical Representation of the PartOf Rule

d. Affected Components Rule

For any two versions vl and v2 and a step s, if vl is a primary input to s and vl

is usedBy v2, then v2 belongs to the set of the affected components of s.

66

Rule:

ALL(vl v2: V, s: S:: (vl s Primarylnput(s)) & (vl usedBy v2) => (v2 e

AffectedComponents(s)).

All of the rules presented earlier in this section are building rules. They are used

to incrementally establish relationships among the system parts. These rules directly serve

the evolution process by mechanically computing the impact of a change in one part of the

system on the other parts.

Since all relationships that bear the semantic of affects (e.g., Affects and some

PartOf instances) are transformed to usedBy relationships, this rule is enough to compute

the consequences of changes. Of course combined with human interventions and

adjustments. Further, since usedBy relation implies dependence of the user on the usee, this

relation can be used in computing affected components due to a proposed change in another

component.

e. Secondary Input Rule

All the components affecting a version of another component updated by a step

are default secondary inputs to the step. These defaults can be manually adjusted if needed.

Since a version v that affects another version vl implies that v is used by vl (by rule a), it

is redundant to specify a separate rule for computing secondary inputs from the usedBy

relationships because it is automatically deduced anyway.

The line of reasoning behind the sufficiency and validity of this rule is similar

to that given to the rule in d above.

Rule:

ALL(s: S, v vl: V:: (vl e primary_input(s)) & (v affects vl) => (v e

secondary_input(s)))

67

G
AJ* < ^-^Primary

sAffectsf \ Input
s

x—y

I
Secondary
Input Rule

I
Y

Secondary
Input

Figure 4.4 Graphical Representation of the Secondary Input Rule

Some of the rules presented in this subsection are introduced for the first time.

Others are derived from and modify similar ideas extracted from previous works [47], [69].

The Affects rule is introduced for the first time because of our extending the graph model

to incorporate requirements analysis. This required the introduction of the Affects relation

to tie together some parts of the system (see Chapter El).

The usedBy was introduced as a relationship in the above previous works.

Secondary inputs and affected modules were defined in terms of this relation. In the

previous works there was the implicit assumption that all the instances of this relation is

derived automatically. Our work formalizes this relation and extends the automatic process

to not only using this relation in deriving the secondary inputs and affected modules, but

68

also to build this relation as explained above. The semantic of the usedBy rule introduced

in b was not accounted for in the previous works.

The part of the PartOf rale introduced in c that establishes the usedBy relation

in the requirements hierarchy is introduced for the first time. We also formalized the

concept of the affected components in the rule given in d.

We extended the process that computes the secondary inputs. This is introduced

in the rule given in e. Instead of basing the computation of the secondary inputs on the

usedBy relation only, our work bases it on the Affects relation. Firstly, because we have the

Affects relation explicitly modeled. Secondly, the Affects relation implies a usedBy relation.

/. UsedBy Direction in the PSDL Hierarchy

The direction of the UsedBy relationship in the PSDL hierarchy is complicated

by a few facts that should be considered carefully when dealing with that relation either to

automate its generation or to manually adjust the computed values. By direction here we

mean the domain and the co-domain of the relation which is represented graphically by an

arrow from the former to the latter. These facts are:

1. In the initial creation of PSDL components a parent Spec is UsedBy its implementa-

tion, and this implementation is UsedBy each child Spec. This is the default direc-

tion of the UsedBy relation. Figure 4.5 depicts this fact.

2. Changes can make dependencies in the reverse direction. This situation is illustrated

in Figure 4.6. The default direction of UsedBy is reversed when a step modifies 10.

In this case SAO and SBO are needed as secondary inputs to this step.

69

Parent Spec

UsedBy

Implementation

UsedBy

Child Spec

Figure 4.5 Direction of UsedBy for Initial Creation

Primary
Parent Spec I S0 1 "'» [Step

Implementation

Child Spec

Output

Output

Default direction of UsedBy

Reversed direction of UsedBy

Figure 4.6 Changes can Reverse the Direction of UsedBy

70

3. Alternatives Generation and Evaluation Support

This type of support assists in the analysis phase of the process to:

1. Identify the set of alternatives available for resolving an open issue.

2. Gather relevant information that assists stakeholders on their judgements on the

available alternatives.

3. Support the process of the independent judgement of each stakeholder.

4. Support the process of combining the individual judgements into one group judge-

ment and final decision.

These tasks are performed within the context of a top level analysis step generated

automatically for resolving an issue. Two substeps are generated as part of the latter step.

The first deals with the determination of the available alternatives and generating relevant

information. As part of this substep, the affected parts of the system design are exposed and

a proposed plan to modify these parts is generated. This plan takes the form of a series of

induced steps. The second substep deals with the kind of support required by steps 3. and

4. above. Stakeholders are directly involved in the tasks associated with this substep. We

elaborate the detailed process related to this activity in Chapter V.

The process ends by selecting one or more alternative(s) according to the combined

judgement of the stakeholders. The manager or analyst approves the step associated with

the chosen alternative(s). Accordingly, the system propagates the approval to all substeps

related to the selected alternative, and rejects (abandons) other alternative's activities.

Following are the detailed procedures in support for generating and evaluating alternatives.

a. Alternative Generation

Once the set of the requirement components affected by each issue is

determined, it is then manually linked to the issue, This set is also partitioned (if applicable)

into independent subsets Q£. Each Qj can be manipulated independently from other subsets

71

to resolve the issue. This partitioning is based on the technical experience of the analysts.

An issue can be resolved by changing existing requirement components, creating new ones,

or combination of both.

If the manager (analyst) then issues the GenerateAlternatives command to the

system, the support facility creates a number of alternatives at each corresponds to one

independent subset of the affected requirement components. Each alternative is added to

the list of alternatives for resolving that issue and is marked tentative. Tentative here

indicates that this alternative is not necessarily the one to be used in resolving the issue.

Within this activity, the system gathers relevant information related to each of

these candidate alternatives. This information is used along with others to guide

stakeholders in the selection process. Automation abstraction in support of this process is

depicted by the algorithm in Figure 4.7 given for one open issue /.

72

Algorithm GenerateAlternatives (I: input Issue)

Input: An issue I

Output: A set of tentative alternatives to resolve I with a proposed top

level step associated with each alternative.

Begin

If I affects more than one independent requirements

subset Qk then

For each Qk do

Create an alternative ai

a^requirementsjset := Qk

aj. status := tentative

Add ai to l.altemativesjist

Generate a step S in the proposed state such that

5. primary_input := Qk

S.secondry_input := I

end do

end if

end GenerateAlternatives.

Figure 4.7 Alternatives Generation Algorithm

This algorithm abstracts only the main tasks involved in the alternatives

generation support. Many details need to be worked out for actual implementation. The

algorithm takes as an input parameter one issue I to be resolved. This parameter is most

likely a reference to a structured object of type issue. Some of this object attributes are

73

already assigned values (see "Other Types" on page 152) for the attributes). An example is

the requirement components affected by the issue. Some other attributes are to be assigned

values by the algorithm. An example is the list of alternatives worked out and assigned by

the algorithm. Before the algorithm can work on it, the issue should have gone through

some analysis stages. The set of the requirement components affected by I must have been

determined. This set also must have been partitioned into independent subsets (if

applicable). Alternatively the affected set could be partitioned within the scope of the

algorithm. In the latter case one possible scenario is as follows:

1. The system presents the issue to be resolved to the analyst along with the affected

requirement components set Q^ec^

2. The analyst reviews the Qaffected set ancl chooses partition (if applicable). New

requirement components can be proposed here too.

3. If the analyst chooses partition, he has to specify the requirement components in

each partition. The system makes this task easy. Except for the mental task of deter-

mining that there is a feasible partitioning, all the analyst has to do is clicking the

mouse buttons to perform the actual partitioning.

4. For each partition the system creates an alternative. The content of an alternative is

the requirement subset in the partition. The system assigns the value tentative to the

issue status.

b. Alternatives Evaluation

The decision support mechanism assists in the alternatives evaluation process

by providing the following:

1. Gathering information relevant to each alternatives.

2. Assigning values to the attributes of the alternatives based on the gathered informa-

tion.

3. Assisting stakeholders in weighting the criteria of judgements agreed upon by them.

74

4. Assisting in expressing the preference of each stakeholder for alternatives.

5. Assisting in combining individual stakeholder preferences into one that expresses

the preference of the group. A group decision is based on the latter.

6. Assisting in generating a drafted change request that expresses the group decision.

7. Providing the capability to dynamically change measures (or their values) used in

the selection process.

Chapter V provides detailed elaboration on a methodology to be used in

implementing steps 3-6 above. In the rest of this section we concentrate on the process of

gathering the required relevant information in support of the selection process.

4. Relevant Information

The relevant information gathered in support of the selection process is made

available to stakeholders. It gives them a kind of aspects that characterize each of the

debated alternatives. This information also puts the fingers of the technical team on the

expected consequences of implementing a specific alternative. However, the support

mechanism offers only advice which can be overridden by stakeholders.

The decision support mechanism uses the dependency graph and the design

database to gather the required information by following the relationship links of the

current state of the graph. In the following we present this kind of information which is

concerned with the new PSDL components required to resolve an issue as well as the

existing PSDL components to be manipulated for resolving the same issue. The

computation is performed for every alternative that can be used to resolve the issue. The

gathered information also includes the availability of designers of the required expertise

field and level to carry out the implementation effort of the selected altemative(s).

75

a. An Estimate of the Issue Resolution Effort

This piece of information represents an approximate number of the new PSDL

components (specification and implementation) to be designed and implemented as a result

of selecting an alternative to resolve an issue. The figure is used as a quantitative measure

indicating the cost of implementing an issue resolution using a specific alternative.

This measure is crucial, for example, to catch up with a deadline. Of course

minimizing effort should not have a negative impact on satisfying customer needs. The

information gathered assists in identifying the effort associated with the implementation of

each alternative. Alternatives can then be ordered by this measure for stakeholders to

choose according to which if minimizing effort is a major concern.

The ordering is based on the number of the new PSDL modules (Pi_New)

required. This figure is approximated by the number of the requirements components in the

requirements subset of the alternative which are not currently linked to any PSDL module

by uses relationship. This rule of computation bears the implicit assumption of a one-to-one

mapping between the PSDL and the involved requirement components which is not always

true. As an indicator, this simplification is acceptable, however. Further, the computation

validity is subject always to human reviews and adjustments.

The algorithm in Figure 4.8 below depicts the computation actions to determine

Pj_New.

76

Algorithm Compute Pi_New(I, a)

Input: an issue I and alternative a such that ae I ■ alternatives
Output: Pi_New (the number of the new PSDL modules required to

resolve I using a).
Begin
Initialize P^New to 0

For all q such that q e a- requirements do
For all components c such that c e {q- UsedBy) do

Ifc.type = PSDL then /* q can be linked by usedBy relation
to another requirements component */

exit /* q is Linked to at least one existing PSDL
component */

else
Increment Pi_New

end if
end do

end do
Return Pt_New
end Compute P^_New

Figure 4.8 Algorithm for Computing the New Required PSDL Components

b. An Estimate of the Issue Resolution Complexity

The kind of information gathered here supports the evaluation of an alternative

in terms of complexity. Again it is an indicator only that can be overridden by human

judgement. This information answers the question of how complex is resolving an issue by

taking the course of actions proposed by a specific alternative. The answer is extracted from

77

the effect on the different parts of the prototype design as a consequence of implementing

the resolution using that alternative.

This effect is quantified by the number of the affected PSDL modules assuming

that as this number increases, so does the complexity of implementing the resolution. This

is because firstly, modifying many PSDL components indicates that much care should be

taken to analyze the impacts of these changes. Secondly, the wider the changes spread, the

more things goes out of sync. For example, timing constraints adjustments may lead to

rescheduling under the potential of finding no feasible schedule. Thirdly, the wider the span

of the proposed changes, the more probable inconsistencies are created and the more

expensive to fix.

The decision support mechanism extracts the required information from the

dependency graph by computing the number of PSDL components (P^Affected) that are

affected by selecting the subject alternative.This computation is performed by counting the

number of PSDL components linked to the requirements subset to the lowest level in the

dependency graph. The usedBy relation is used in this kind of computation.

In this case the alternatives available for resolving an issue are presented to the

decision maker ordered by that measure where the one with the minimum affected

components comes up first

The algorithm given in Figure 4.9 illustrates this computation process. In this

computation there is the danger of over counting the required PSDL modules if the usedBy

relation is only used in the computation. This is because the usedBy relation not only links

requirement components to the PSDL components, but also transitively links requirement

and PSDL components to their parent components. Figure 4.10 illustrates this problem. In

this figure a fragment of a system prototype showing the links between the fragment of the

requirements hierarchy and the corresponding fragment of the PSDL modules hierarchy.

78

For simplicity we assume a one-to-one mapping between requirement components and the

PSDL modules. As one can see from the figure, the number of the PSDL components

linked by usedBy to the requirements fragment can be overcounted. This happens because

ml.l is counted twice as follows:

(1) q1-+m1^ A77-11 (3) ql.l^ml_1

Algorithm Compute Pi_Affected(I, a)

Input: an issue / and an alternative a such that ae I ■ alternatives
Output: Pi_Affected (the number of the PSDL modules affected by

resolving I using a.
Function usedBySet(S, c)
I* Finds components that uses c and inserts their IDs into and returns

the set S */
Input: A set S and a component c
Output: The Set S added to it the IDs of the components that use c
Begin

For all components w such that w e (c • UsedBy) do
If w.type = PSDL then

Insert w.componetID into S
usedBySet(S, w) /* Recursive call */

end if
end do
return S

end — usedBySet

Begin -- Compute Pi_Affected
Initialize P_Affected to 0
Initialize Set S I* Empty it */
For all q such that qe a- requirements do

usedBySet(S, q)
end do
Pi_Affected = Cardinality(S)
Return Pt_AJfected
end Compute P^Affected

Figure 4.9 An Algorithm for Computing P_Affected

79

partOf
-► usedBy

q{: Requirement component
mji PSDL module

Figure 4.10 Fragment PSDL and Requirements Hierarchy

This problem can be solved by introducing a boolean flag visited initialized to

False and set to True when a PSDL component is counted. The flag is checked before

counting a PSDL component. If it has the value True, the component is not counted.

Otherwise it is counted and the flag is reset back to True.

Another, perhaps easier, solution is scanning the part of the dependency graph

related to the input alternatives by following the usedBy relation and inserting the

80

component ID of each encountered PSDL component in a temporary set. Since a

component ID is unique and a set data structure does not allow duplicate elements, the ID

of each PSDL component affected by implementing the alternative is inserted once. The

count of these components is given by the cardinality of the set. This is the solution we

employ in the above algorithm using the function usedBySet.

B. OTHER TYPES OF DECISION SUPPORT

Other types of decision support provided include supporting the tasks of teamwork,

scheduling, assignment of default values, propagating inherited properties, replanning, and

task serialization. Following is a brief discussion of some these support functions.

1. Teamwork Support

In support of teamwork, the system identifies tasks that can be executed

concurrently by members of the design team. When a designer whose expertise field and

level match the task requirements is available, the step is assigned to him and an automatic

transition from scheduled to assigned occurs. Identification of concurrent tasks is

computed partially from the dependency graph by considering the relationships between

the graph parts. If two steps are to modify two components and the second component

depends on the first, the task of modifying the second component can not be performed

concurrently with the task of the first one. The precedence among tasks associated with

analysis or design steps is effectively an acyclic directed graph G = (S, E) such that the

following constraint holds:

Rulel:

ALL(sls2:S::((sl,s2)e E) => (si Precedes s2))

Most of the precedence relations are calculated mechanically with possible manual

adjustments by managers. The following rule is a typical constraint used in precedence

computation.

81

If si is a step whose primary input is the version vl, and s2 is another step whose

primary input is v2 such that v7 is used by v2, then the task associated with si precedes that

associated with s2. In other words s2 can not be assigned to a designer until si completes.

Note that this constraint is also necessary because the designer assigned the task associated

with s2 will need a read-only access to the output of si.

Rule2:

ALL(sl s2: S, vl v2: V:: (vl e primaryJnput(sl)) & (v2 e primaryJnput(s) & (vl

usedBy v2) => (si Precedes s2))

Potential for teamwork may also be available in higher than design level. In the

process of resolving issues, resolution of two issues can proceed concurrently if no

interdependence exists between them. Interdependence among issues is determined from

the set of requirement components each issue affects. For example if issue 7^ affects the set

of requirements Q1 and issue I2 affects Q2, then for Ix to be independent on 72, the

intersection of Q1 and Q2 must be empty. This can be formally expressed as:

Rule3:

Al7,(77 i2:1, ql q2: Q:: (il independent_on i2) <^>

((il affects ql) A (i2 affects q2) => (q 1 * ql)))

This can represent the basis of high level teamwork support. Issues can be resolved

concurrently. After determining the requirement components affected by each issue, a

check can be made to identify independent issues. A subteam can then work independently

(and possibly concurrently) to complete the analysis tasks of the issue and any consequent

changes in the design and implementation. The teamwork support in the context of the first

two rules can be employed to support the concurrent work within the scope of the subteam

assigned the issue.

82

2. Scheduling Support

The decision support mechanism enforces the timing and priority constraints of

tasks within a schedule. The timing constraint of a step is specified in terms of two

parameters: deadline and the estimated duration. The deadline of a step is the time by

which the step must be completed according to customer restrictions or manager's resource

planning. The estimated duration is a management estimate of the time needed to perform

the step. The values are assigned manually by managers and are monitored by the system

during the execution of the schedule. If some constraint is violated, the manager is warned

of the situation to intervene and make a corrective action.

Scheduling support has to cope with the dynamics of the scheduling process. This

provision also supports incremental replanning as additional information becomes

available. Precedence among tasks as well as deadlines and priorities can change

dynamically as new steps are scheduled. In response to these changes, the system responds

as follows[69]:

1. If Sis "scheduled" then:

• modify the dependency graph to reflect these changes, and

• recalculate the schedule according to the modified graph.

2. If S is "assigned" then:

• include all the effects mentioned in 2 above, and

• suspend any assigned steps that become dependent on any of newly added steps,

and

• assign any of the steps that become ready.

3. Propagating Inherited Properties

In order to preserve the integrity of the whole system under development and make

changes conform to a consistent plan, a substep transitions into its parent's status following

the approval of the parent. When a step is approved, the system automatically creates a

83

substep for each affected component. The system propagates the parent's "approved" status

and any following transitions made by that parent to the created substeps. Following are

some constraints enforced by the system in support of the automated control of steps

transitions.

1. When a step changes from the "approved" state to the "scheduled" state all of its

substeps automatically inherit this transition.

2. When a step is rolled-back from the "scheduled" or "assigned" state to the

"approved" state all of its sub-steps automatically inherit the same transition.

3. When a step changes to the "abandoned" state all of its sub-steps automatically

inherit the same transition.

4. When a new substep is created, it inherits the same state as its parent step and inher-

its all version bindings associated with the parent step.

This controlled transition works also up to propagate substeps status to the parent

step as in the following two cases. Notice that a parent step makes the transition after all its

substeps make the same transition.

1. A step automatically changes from the "assigned" state to the "completed" state

when all of its sub-steps have done so.

2. A step automatically changes to the "abandoned" state when all of its sub-steps

have done so.

4. Structuring Support

The basis of the automated decision support provided is derived from two main

sources: the set of rules and constraints associated with the support functions and the

structuring of the process imposed by the conceptual model represented by the dependency

graph with its different components and relationships. The kind of structure enforced by the

model assists in exposing and recording the process knowledge of ill-structured problems

in general. According to Joanne Linnerooth [39], decision makers are better served by

84

creative help in structuring the problem at hand. This structure should also provide a way

of representing decision knowledge that makes it easily understood, updated, and actively

used by participants in the decision-making process [85]. Our model provides a well

structured representation for:

• Human individuals involved in the process either from the customer or

development team side.

• Criticisms generated in response to the system demonstration.

• Issues synthesized from criticisms and linked to the affected requirements.

• Requirements components structured hierarchically linked or to be linked to

specification modules.

• PSDL specification modules linked to implementation modules.

• Implementation modules.

• Analysis and design activities linked to the components they modify.

The links in the graph tie the model elements with different relationships that are

used in part for providing the automated support. For example, when a step modifies a

component Cl and this component is linked to another component C2 by Affects link, the

system is aware of the necessity of generating a substep to modify C2 to take into account

the consequence of Cl change. This awareness is possible because of: first, the link that ties

the two components and second, the existence of a rule specifying when to generate an

automatic substep.

Ideas similar to the support functions discussed in this subsection were originally

defined by Luqi in [47]. These definitions were enhanced and augmented in [69] to support

the evolution process of the prototype system design as part of the ECS.

The lower level teamwork support provided in B.l is the same as that provided by

the ECS. Teamwork support within the context of the third rule is an extension of this

support functionality. We introduce this extension that can support not only the concurrent

work of individual designers, but also support the concurrent work of subteams. Each

85

subteam includes analysts and designers who are assigned the responsibility of completing

the analysis and resolving the issue as explained above.

Support related to scheduling and propagating inherited properties (see B.2 and

B.3) are the same as that provided by the ECS. However, the scope of application is wider

in our case. The scheduling process is also subject to more constraints especially in the

analysis phase. The scheduling mechanism has to deal with the serialization of the analysis

steps in the upper stream portion of the process as was explained in Chapter IE. The

serialization imposes another kind of precedence among analysis steps than the one

explained in this section.

The structuring support we provide is an extension to that provided in [47]. This is

because our model extends the one provided in the above reference. In our extended model

we identify more software components (criticisms, issues, requirement and components).

New type of steps is added (analysis steps). Individuals involved in the process are

explicitly represented too. Also new types of relations among the model types are added.

C. DECISION SUPPORT COMPONENTS

Generally a decision support system (DSS) is a system that supports technological

and managerial decision making by assisting in the organization of knowledge about ill-

structured, semistructured or unstructured problems [3]. A decision support system primary

goal is to increase the effectiveness of the decision-making effort which involves the

formulation of alternatives, the analysis of their impact, and the selection of appropriate

options for implementation. A decision support system should also have the ability to

acquire, represent, and utilize information or knowledge.

A decision support system has the following main elements:

• Database component.

• Model component.

• User interface component.

86

The interaction between the decision maker and these components is shown in

Figure 4.11 below [3].

1. The Database Component

The database contains the reservoir of information that describes all of the

conditions and characteristics of the problem in question [58]. Through the employed

database management system (DBMS), a better control over and management of data is

achieved. Functions like, querying capability, sharing of data, backup and recovery, and

enforcing of integrity constraints are examples of what is readily available of management

and control functions provided in general by a DMBS.

DBMSs commercially available support different data models. A data model is a

collection of data structures, operations that may be applied on the data structures, and a set

of integrity rules to be enforced by the database system. Examples of these data models are:

the relational, hierarchical, network, and object-oriented data models.

Our Decision support mechanism is supported by an object-oriented-based

database. We selected the object-oriented data model for its suitability and representation

capability for inherently complex and data intensive problems such as the one on hand. An

object-oriented data model has the advantage of modeling all of the conceptual entities with

a single concept, namely, objects [34]. It can easily represent a real world problem because:

1. It includes facilities to manage the software engineering process in general like data

abstraction and inheritance.

2. It can easily represent complex objects.

3. It can directly represent relationships and interconnections in the data.

4. Properties of data are also directly available.

87

Decision Maker

User Interface

Model Database

Figure 4.11 Decision Support System Main Components

In our view, the requirements elicitation, evolution, and the complex relations that

tie this process entities to other parts of the system design and implementation can better

be represented by objects, their properties, and their relationships to other objects. Within

the context of an object-oriented database, it is also easier to track the history of an object

along with its relationships which is very important in evolutionary process like ours.

Recording and querying design rationale is another important outcome for design replay,

learning process, comparative studies, and change in customer goals.

2. The Model Component

The modeling component of a DSS provides the means for mathematically

representing the complex structure and relationship between the various parts of the

problem elements. Modeling a real world problem is necessary in order that the problem

can be depicted and analyzed by a computer. The mathematical formulation embedded

within the model provides a descriptive mechanism through which information can be

manipulated repeatedly and the decision maker can emulate what will actually take place

[58].

In our problem, the model component has the following parts:

1. The conceptual model given by the extended graph model. This conceptual model

provides the formalism of the process to:

• Impose a well defined structure on the problem.

• Represent the underlying relationships.

• Control the evolution of the system as a whole.

• Expose consequences of changes and suggest activities to make these changes

consistent system-wide.

• Assist in identifying issues to be resolved.

• Explore alternatives available to resolve issues.

• Assist in analyzing alternatives and selecting the most promising one according

the measures specified by the decision maker.

2. A scheduling model which supports the scheduling of the analysis and design tasks

under different timing, resource, and priority constraints as well as coping with the

dynamics of the process.

3. Assignment model to draw from a common analysts and designers pool to be allo-

cated to tasks under the constraints of tasks skill requirements, availability of

designer, urgency of tasks, etc.

4. A set of rules and constraints that governs the process and is used in building algo-

rithmic procedures that assist in automating many activities and performing differ-

ent computations as explained in section A. These rules and constraints are also

used to infer values and relationships and draw conclusions based on the given

facts.

89

3. The User Interface Component

In a DSS, the user interface component is a prime motivation for the system that

provides an effective interface with the user. One of the good attributes of a DSS is making

available a user interface that provides all interactions between the computer and the

decision maker and further hides the technical complexities and internal mechanism

necessary to automate the process. Other desirable functions to be performed by a user

interface are [11], [58]:

1. Translating user inputs into the appropriate directions for the computer.

2. Checking the validity and logic of all user inputs.

3. Generating appropriate and informative responses that explain the results, recom-

mended possible creative actions, or suggest new direction to be evaluated.

4. Minimizing the user's memory load.

5. Speaking the user language.

6. Permitting easy reversal of actions.

7. Being consistent

The user interface component of our system is a graphical user interface developed

using Transportable Application Environment Plus (TAE Plus) [91]. Part of this user

interface, let us call it the general part, represents parts of the CAPS user interface and is

used by our support mechanism but is not specific to requirements analysis subsystems.

The other part, to be called the specific part, is to be developed specifically for requirements

analysis, evolution control, and interfacing to the design database.

(1) The General User Interface: This part represents the portion of the CAPS

user interface relevant to the requirements process. It offers the following facilities [87]:

• Testing Display that shows the prototype execution or the interpretation of the

design. The display may be a time chart indicating the system state change or the

90

desired system behavior sequence like dialogue, input/output, reactions, etc.

• Analysis Display that shows the results of the static analysis as the designer

required.

These two facilities are used in demonstrating the prototype to the customer to

stimulate him to respond to the demonstration by criticisms. These criticisms are used after

analysis for evolving the prototype to the next version within the process of firming up

requirements.

(2) The Specific User Interface: This represents the part of user interface to be

developed specifically to support the requirements process. It includes facilities to do the

following:

• Map the process knowledge to the conceptual model objects,

• Establish relationships between the model objects.

• View and update values and dependencies previously stored in the database.

• Control analysis and design activities.

• Conduct on-line analysis of alternatives available for resolving issues.

• Support customers conduct the formal debate and judgement of available

alternative requirements changes.

• View the consequences of selecting an alternative.

• Monitoring the execution of the plan and allow for dynamic changes in that plan.

This part supports the flow of information into and from the database and

presents it in a user-friendly format. It includes varieties of facilities that allow its user

communicate easily with the system like pull-down and pop-up menus, dialog boxes (e.g.,

radio buttons and check boxes), text entry fields, scrolable list of choices, etc.

91

92

V. SUPPORTING STAKEHOLDER DELIBERATION AND JUDGEMENT

In Chapter IV. we discussed how the decision support mechanism assists in

generating alternatives to resolve open issues. We also discussed how the mechanism

assists in gathering information to be used in the analysis of the generated alternatives in

support of the resolution process. This information is presented to the stakeholders to assist

them in the selection process. In this chapter we explain how can we choose an alternative

or alternatives that reflect the customer preference.

A. A METHOD FOR CHOOSING AMONG ALTERNATIVES

The method we use is inspired by the Analytic Hierarchy Process (AHP) which

underlies a mathematical model and process to prioritize options. The outcome priorities

are then used to choose among alternatives. The method was successfully used in the areas

of planning, resource allocation, conflict resolution, prediction, and other applications.

Recently this technique was evaluated as more trustworthy and less time consuming than

techniques like numeral assignments when used to prioritize requirements [38]. The

material presented in this section related to the AHP model is based primarily on the many

published works on the model by Thomas L. Saaty. Our focus is the application of the

process part of the model is primarily to select among requirement alternatives that satisfy

the customer needs, and be simple and cost effective, when implemented, as a secondary

goal. For details concerning the mathematical model, validation, and different application

of the AHP, refer to [77]-[80].

1. The AHP Process

Although the method is based on a mathematical model, the AHP process, its

application, and use is very simple. For the sake of illustration, assume that we are to

choose one (or more) from four alternatives A1,A2, A3, and A4 to achieve the goal g. The

process should end by answering the question: which of these alternatives is more

93

important for achieving g. To solve this decision problem, the decision maker has to

compare the alternatives pairwise, assigning each an importance factor relative to the other

alternatives. This effectively, is filling an n x n importance matrix where n is the number

of alternatives (n = 4 in our case). An entry al;j in this matrix means that the importance of

the alternative At relative to Aj is a^ (with respect to the criteria under consideration). The

matrix for the above example is shown in Figure 5.1. In reference to this figure, we can see

the following:

1. Alternative Al is 5 times more important than A2 (reflected by the matrix entry

aj 2), is 6 times more important than A3 (reflected by the matrix entry ajj), and 7

times more important than A4 (reflected by the matrix entry a14).

2. Alternative A2 is 4 times more important than A3 (reflected by the matrix entry

CL23), and is 6 times more important than A4 (reflected by the matrix entry a2i4).

3. Alternative A3 is 4 times more important than A4 (reflected by the matrix entry

a3,4)-

4. Six entries (tfi2> ai^ al,4,a2^ a2,4> and a3,4), out of *e ^ total elements 0I"tfte

matrix, are the only entries that need to be filled in. The rest of the elements can be

automatically determined according to the following rules.

a. The Main Diagonal Rule

It is intuitive that the importance ratio of an alternative relative to itself is 1.

Therefore the main diagonal elements of the importance matrix M are filled in by l's.

Formally:

Rulel:

For all airi such that a• (- e M, 1 < / < n => a-h •= 1,

94

where n is the number of the available alternatives, and M is the importance matrix

whose dimension is n x n. This rule is used to automatically fill the main diagonal

elements of M.

g Al A2 A3 A4

Al 1 5 6 7

A2 1/5 1 4 6

A3 1/6 1/4 1 4

A4 1/7 1/6 1/4 1

Figure 5.1 An Importance Matrix

b. Reciprocals Rule

In comparing a pair of alternatives At and Aj with respect to a criterion c, if A;

is judged as three times more important than Aj, then it is intuitive that Aj is one third the

importance of A; with respect to c. In terms of the importance matrix, this fact can be

expressed formally by the following rule

Rule2

For all aij such that (a • • e M), a; ~ 1/«,•,• •

The reciprocals rule is used to automatically fill in the elements of the

importance matrix that lie below the main diagonal. This rule along with the main diagonal

rule reduces the number of the pairwise comparison from n to (n(n -l))/2

comparisons.

95

2. The Pairwise Comparison Scale

To fill in the importance matrix as a result of the pairwise comparison process

between alternatives, a scale is needed. The scale is used to represent the relative

importance of one alternative over another with respect to the comparison criterion. The

AHP model uses a numerical scale that has values from 1 to 9. A scale of 9 units is

reasonable and reflects the degree to which human judgement can discriminate the intensity

of importance between alternatives. The AHP scale used for pairwise comparison is given

in Table 5.2.

Unit Meaning

1 Equal importance of 2 alternatives.

3 Moderate importance of one over another.

5 Essential or strong importance.

7 Very strong importance.

9 Extreme importance.

2,4,6,8 Intermediate values between the two adja-
cent judgement used when compromise is
needed between two judgements.

Reciprocals In comparing an alternative Aj with Aj, if Aj
is assigned one of the above values, then Aj
is assigned its reciprocal.

Rationals Ratios arising from forcing consistency of
judgement.

Table 5.2: The Pairwise Comparison Scale

B. ALTERNATIVES WEIGHTING METHODOLOGY

In the pairwise comparison process stakeholders assign relative importance to each

alternative with respect to the others. The pairwise comparison is expressed using the

importance matrix. The next step after filling in the importance matrix is to determine

96

global weights for all the alternatives. The weighting function can be thought of as defining

priorities of alternatives. The higher the priority of an alternative, the more likely the goal

is achieved by implementing that alternative than any other alternative that has a lower

priority.

The global priorities of the alternatives are obtained by manipulating the

importance matrix resulting from the pairwise comparisons. The result of this manipulation

is a vector of priorities that has an entry for each alternative as we explain below.

1. Priorities Vector

Given the importance matrix M, the priority vector is given by the normalized

principal eigenvector ofM. The principal eigenvector is the eigenvector corresponding to

the largest eigenvalue ^max . The mathematical justification for this result is given in

section B.3 below. The desired eigenvector is given by the normalized row sum of the

limiting power of the importance matrix. This is obtained by raising the matrix into some

arbitrary large power and dividing the sum of each row by the sum of the elements of the

matrix. Since the cost of this kind of computation is expensive in terms of time, some other

methods are used that give crude estimates of the required vector. One of these method

called averaging over the normalized columns is summarized in the following steps:

1. Sum each column in the importance matrix M.

2. Divide each element in M by the sum of the column it belongs to obtaining Ml.

3. Sum each row in Ml, the result is a vector v.

4. Divide v by the sample size of n columns, the result is the required priority vector.

Applying these steps to the importance matrix of the example given in Figure 5.1,

the corresponding matrix Ml and the resultant priority vector are shown in Figure 5.2. As

can be seen from this figure, the alternative Al is the most promising alternative to achieve

the goal g with intensity of importance 61 percent If it happens that two alternatives are

97

very close in their importance values, then both can be chosen. Prototyping both and

comparing their effects, determines the final judgement as to which is better.

Ml

g Al A2 A3 A4
Priority
Vector

Al 0.66 0.78 0.53 0.93 0.62

A2 0.13 0.16 0.36 0.33 0.24

A3 0.11 0.04 0.09 0.22 0.10

A4 0.09 0.03 0.02 0.06 0.04

Figure 5.2 The Matrix Ml and the Priority Vector

2. Consistency in Selecting Alternatives

In comparing alternatives paixwise, if alternative Al is judged as 3 times more

important than A2, and that A2 is judged as 2 times more important than A3, then for the

judgement to be consistent, Al should be judged as 3x2 = 6 times more important than A3.

In terms of the importance matrix entries this is expressed as a13 = a12 x a2^. In general

for an importance matrix to be consistent, the following condition must hold:

ai,k = aij x aj,kfor att ij>k ~ !'■■> n-

This represents an ideal case which is not normally true in practice. If this condition

is violated for some entries, then a judgement error occurs. The AHP model accounts for

98

such situations and provides for the measurement of inconsistency if it occurs. Deviation

from consistency can be represented by the consistency index CI:

c/ = amax-,i)/(#!-i).

Where kmax is the maximum or principal eigenvalue of M and n is the number of

alternatives being evaluated. According to the AHP theoretical results, Xmax has the

following properties:

An approximation of Xmax can be obtained by the following procedure:

1. Multiply the importance matrix on the right by the priority v vector to obtain a new

vector vl.

2. Divide each element of vl by the corresponding element of v to obtain a new vector

v2.

3. Sum the elements of v2 to obtain the sum S.

4. Divide S by the number of elements to obtain an approximate value for Xmax.

To measure the consistency of an importance matrix M, the CI of M is compared to

a randomly generated consistency index (Random Index) of a matrix of the same order and

conforms to the reciprocals rule. Random Indices (RIs) for matrices of the order from 1 to

15 were generated and tabulated [77]. Each RI is the average of RIs of the same order

matrices using a sample size of 100. Table 5.3 gives the matrix size and its corresponding

average RI for matrices of sizes 1 to 7.

99

Matrix Size Average RI

1 0.00

2 0.00

3 0.58

4 0.90

5 1.12

6 1.24

7 1.32

Table 5.3: Average RIs for Randomly generated Importance Matrices

The ratio of CI to the average RI of the same order matrix, called Consistency Ratio

(CR), is used to measure the consistency of an importance matrix. Through experience, a

ratio of 0.1 or less is considered acceptable. If a pairwise comparison results in an

unacceptable CR by a high margin that can not be tolerated, then another new round of

pairwise comparisons is performed to bring the CR to a tolerable value.

For our running example, Xmax = 4.39. Using this value with n = 4 we get the

consistency index CI = (4.39 - 4)1 (4-1) = 0.13. The corresponding average RI for a matrix

of this size (see Table 5.3) is 0.9 which when used with the computed CI gives a

consistency ratio CR = (0.1310.9) - 0.14 which is slightly higher than the threshold value

(0.1).

3. Mathematical Justification

The basic mathematical justification of the method given below was first

introduced in [80]. This justification answers the question: why is the priority vector given

100

by the principal eigenvector of the importance matrix, and what does the corresponding

eigenvalue (kmax) have to do with the consistency of judgement?

Assume that we have an ran importance matrix A with elements aJt/-. This matrix

represents a pairwise comparison of n activities (e.g., alternatives) with respect to some

criterion of judgement. We want to find a global weights of influence wj, w2,.., wn of all

activities on the criterion. We know from above that for all i,j =1,2,.., n:

LayX)

2. au = l/au.

3. aiti = 1.

Ideally, if judgement is perfect, e.g., based on known exact measurements, then the

global weights wj, w2,.., wn are known. Further A is consistent, i.e in addition to the above

three characteristics, A satisfies:

ai,k - aijx ajJcfor aH iJ'k - l—> n-

With w,-, i, =1,2,.., n, known, the following holds for the matrix A for all i„j,k

=1,2,.., n:

aitj = w/wj.

aijajk = (wi/wj)x(w/wk) = ((w;)/wft) = aik

which proves the consistency condition in the ideal case. We also have:

a; ,• = —— |=> la; ; = —]=> I a-, ,•• — = !
''•' W/WJ \l'J O: :J \l'J W;

J ' J' ' *

Using the above results and by direct substitution the following holds:

n n
W ■

T ai j— = ^ (ai j■ W/W;) = norequivalenüy:

; = i ' Wi ; = i

101

Aw = nw V ai • • w ■ = nwi which is equivalent to:

This is the well known eigenvalue problem, where n is the eigenvalue of A and w is

the corresponding eigenvector.

In practice a± ,• is not based on exact measurement as in the ideal case, but on

subjective judgements. Therefore atj deviates from the ideal ratio (W(/WJ) and the last

equation no longer holds. However the following two facts from linear algebra help in this

situation:

n

1. For a matrix A(nxn), ^ A,,- = trace(A) , where Xt, i = 1,2,.., n is an eigenvalue of
("= l

A, and trace(A) is the sum of the n main diagonal elements of A [29]. In our ideal

n

case, we have atj = 1 for all i =j = 1, 2,.., n. Hence ^ X-L = n i.e all eigenvalues
/ = 1

are zero except one which is n.

2. For a matrix A(nxn), if A is positive (i.e atj > 0, not to be confused with positive def-

inite) and reciprocal (i.e atj = llcijj) for all i,j = 1,2,.., n, then if we change atj by

small amounts, the eigenvalues of A change by small amounts too. Hence in the

practical case, the eigenvalues of the judgement matrix remain close to those of the

ideal case: the largest eigenvalue hmax is close to n and the others are close to zero.

Hence the priority vector of a judgement matrix whose entries deviate from the

ideal consistent one by small amounts is given by the priority vector corresponding

to the maximum eigenvalue of that matrix.We conclude that given the pairwise

comparison matrix A, we can find the priority vector w: we solve the following

equation for w: Aw = KaxW ■

102

To have a unique solution and makes the sum of priorities equal unity, we

normalize the solution by dividing each element in w by the sum of the elements.

In the consistent (ideal) case, we have n as the largest eigenvalue. If atj deviates by

small changes, the resulting largest eigenvalue is hmax which is always larger than n. The

more consistent the judgement matrix is the less the difference between both. In the ideal

case both are equal. Therefore the deviation of hmax from n is a measure of consistency.

hmax-n
That is why the value ;— is taken as a consistency index to indicate closeness to

n- 1

consistency.

C. MULTI-LEVEL HIERARCHY DECISION PROBLEMS

Most decision problems are semi or ill-structured. A necessary prerequisite for

providing efficient solutions for such problems is structuring. Hierarchical structuring is a

structuring technique that well suits decision problems in general. A hierarchy abstracts a

system structure in a way that exposes the system components. Hierarchical structure is

also close to human thinking.

The AHP employs hierarchical structuring as the underlying abstraction technique.

A problem is broken down into a number of hierarchical levels. The number of levels and

what each level represents depends on the nature of the problem and the sought solution. In

our case, the problem is to choose from alternatives based on some criteria. Therefore the

problem structure in general includes three main levels:

1. The Focus: is the root of the hierarchy (levell).

2. The Criteria: are the attributes on which judgement is based (level 2).

3. The Alternatives: to choose from (level3).

Levels 2 and 3 can be further decomposed into more levels to detail criteria to

subcriteria and to qualify alternatives to be more concrete. Regardless of the number of

levels in the problem structure, the application of the method remains conceptually the

103

same. In the above subsection we discussed how, given the importance matrix, we can

compute the priority vectors and consistency ratios. This discussion was applicable to only

one specific level of the problem hierarchy with respect to one criteria in a lower level. In

the following we extend these ideas to be applicable to the hierarchy as a whole [80].

1. Composite Priority Vector

Informally, in a hierarchy H with h levels, if the priority vector of the pth level with

respect to some element z in the (p-l)st level is given by the vector Vp, then the priority

vector of the <?th level with respect to z where the qth level is higher than thepth level (the

root is lowest level in the hierarchy), is given by [79]:

W = BqBq_v..Bp+1Vp

Where Bk is the priority matrix of the £th level.

Therefore the priority vector of the highest level with respect to the root element

(the root of the hierarchy; to be termed Focus in the next subsection) is given by:

W = BhBh_1...B2V1

Where Vi is the priority vector of the second level with respect to the root elements

(a scalar taken as 1 if the hierarchy has only one element in the lowest level as normally is

the case).

In the case of three level hierarchy of a single element in the first level, the last

equation reduces to multiplying the third level priority matrix on the right by the priority

vector of the second level. The intuition of the general rule is clear in this case: this is

effectively the same as weighting each eigen vector in the third level by the priority of each

element in the second level and then adding. In the case of choosing between alternatives,

the intuition is even clearer. To get an overall ranking of each alternative, we need to

104

multiply the weight indicating the qualification of that alternative with respect to a specific

criterion by the weight of that criterion in the selection process.

2. Composite Inconsistency

The measurement of consistency in judgement can also be generalized to the entire

hierarchy. The intuitive approach would be multiplying the index of consistency obtained

from a pairwise comparison matrix by the priority of the element (or criteria) with respect

to which the comparison is made and then add all the results for the entire hierarchy. This

intuition is formalized below [80].

Let rip j = 1,2,..., h be the number of elements of the/th level of a hierarchy of h

levels. Let wy- be the composite priority of the ith element in the/th level, and let kij+j be

the consistency index of all elements in the (/+i)st level compared with respect to the

element i of the/th level. The consistency index of the hierarchy is given by:

h n<;

C
H= X EVw+i

y=lz = l

Where vt>y= 1 forj= l,andn- is the number of elements in theyth level with respect

to which the elements of the (j+l)st level are compared.

The result of the above sum is then compared with the corresponding index

obtained by taking randomly generated indices, weighting them by the priorities, and

adding.

D. IMPROVEMENT OF THE AHP

We propose the following improvements on the AHP method. These improvements

are concerned with:

1. Improving the AHP scale.

105

2. Improving the efficiency of computation of the method.

3. Improving the accuracy of the results.

4. Changing the way the method is applied to allow stakeholders express their inde-

pendent judgements.

5. Combining our view of the IBIS model with the AHP to overcome the limitations of

both the IBIS model and the AHP.

The first improvement makes strictly consistent judgements come out in more

natural way. The second and the third improvements involve the use of exact (or very close

to exact) methods to compute the priority vectors and consistency indices. The fourth

improvement changes the way the method is applied for problem solving. This

improvement synthesizes the solution of the decision problem from the solutions of

multiple instances of the same problem and then combines them. In the requirements

context this improvement has the spirit of combining parallel elaborations [59]. The fifth

improvement is to combine our version of the IBIS-based process with the AHP process.

This superimposition is used in formalizing the notion of the IBIS position as we explain

in section C.3 and quantify judgements. The same improvement adds some representation

capability to the AHP using the IBIS model objects and relationships.

1. Improving the AHP Scale

The problem with the original weighting scheme is that for the official weightings

there often do not exist choices for some of the entries that would make all the choices

consistent. Consistent judgement requires transitivity. The condition of transitivity in terms

of the comparison matrix entries is expressed by the following equation which we

discussed earlier in this chapter and is repeated here:

dijxajk = ciikfor all i,j,k = 1,.., n

Consider three alternatives A, B, and C. According to the AHP levels of importance

if A has strong importance (corresponds to the scale value 5) over B, and if B has moderate

106

importance (corresponds to the scale value 3)over C, then for the consistency to hold the

importance of A with respect to C must be strong x moderate = 5 x 3 = 15 which is

outside the numerical range (1-9) of the AHP scale.

Therefore as an improvement we suggest the numerical weightings of the

importance levels be distributed exponentially over the scale levels. This makes the scale

more dense and to some extent closed under multiplication.

Table 5.4 shows a fragment of an example exponentially distributed scale. The

entries of this scale are given by the geometric series: b , b , b ,.. , b0- According to this

new scale strong x moderate = b5 x b3 = bs which lies within the scale

IMPORTANCE
LEVEL

THE AHP
SCALE

THEEXP.
SCALE

VALUES

Equal Importance 1 b° 1

2 b1 1.3

Moderate Importance 3 b2 1.7

4 b3 2.3

Strong Importance 5 b4 3.0

Table 5.4: The Exponential Scale

For simplicity of use the entries of the new scale can be mapped to the original

scale. Since we know that b8 = 9, we conclude that b = 1.3 from which the rest of entries

can be found as shown in the table. The user can then be presented with the AHP scale and

the system maps it to the exponentially distributed one.

2. Computation Improvement

According to the mathematical model of the AHP [78], the following theorem is

used to compute the eigenvector corresponding to the maximum eigenvalue:

107

,Hm T~T = CWmax> where:
k~*~e A e

A is the importance matrix, c is a constant, wmax is the eigenvector corresponding

T to the maximum eigenvalue, and e = (1,1, ...,1) . Informally it states that the principal

eigenvector (wmax) is given by the normalized row sums of the limiting power of the

importance matrix. So a suggested way to calculate wmax is to raise A to powers that are

successively squared each time. The row sums are calculated and normalized. As a

stopping rule, the computation ends when the difference between these sums in any two

consecutive iterations is smaller than a predefined small value.

The complexity in terms of time of the above outlined algorithm is 0(n log2k)

which is expensive computation cost that let the AHP use approximate methods as was

explained in B.l, see page 97. The use of these methods produces crude estimates of the

desired values [80].

However there are known algorithms that give more accurate results and they are

more efficient in the same time. Many of these algorithms are based on and augmentation

of the well known Q-R algorithm from matrix theory. Some variants of the Q-^-based

algorithms solve the eigenvalue problem in 0(n2) [29]. This is a great improvement over

the complex limiting power algorithm of the AHP. Even it is comparable to the complexity

of the crude estimate algorithm the AHP uses. Moreover the Q-R-based algorithms should

give results more accurate than both the limiting power and the crude estimate algorithms.

The details of the Q-R-based algorithms for solving the eigenvalue problem is beyond the

scope of our work. For more details refer e.g., to [27].

Therefore our first improvement to the AHP is to use any of the available Q-R-

based algorithms to find the priority vectors and hmax. However many linear algebra

108

packages are available today that solve the same problem efficiently using the Q-R-based

algorithms. An example is MATLAB [92]. The only problem with MATLAB is that the

results are not normalized. So we need to first, find the maximum eigenvalue and the

corresponding eigenvector, and then divide the elements of the resulting vector by the sum

of the elements of the vector. This normalizes the elements and makes their sum equal

unity. These steps are accomplished by feeding the MATLAB results into a program we

wrote (Progl) to do the required postprocessing.

We also wrote a second MATLAB program (Prog2) that computes the priority

vectors for matrices of different dimensions using the AHP crude estimates algorithm. We

ran the two programs on sample square matrices of dimensions from n = 4 to n = 9 to

compute the priority vectors. The MATLAB computation is comparable in efficiency to but

more accurate than the AHP crude method. A fragment of these results is shown in Figure

5.3. The figure gives the comparison matrix (7x7), Priority Vectorl as computed by Progl

and Priority Vector2 as computed by the crude algorithm. Appendix C includes the source

MATLAB code for both programs and the results of running both on different matrices as

well as the resulting priority vectors.

Comparison Matrix

1.0000 4.0000 9.0000 6.0000 6.0000 5.0000 5.0000
0.2500 1.0000 7.0000 5.0000 5.0000 3.0000 4.0000
0.1100 0.1400 1.0000 0.2000 0.2000 0.1400 0.2000
0.1700 0.2000 5.0000 1.0000 1.0000 0.3300 0.3300
0.1700 0.2000 5.0000 1.0000 1.0000 0.3300 0.3300
0.2000 0.3300 7.0000 3.0000 3.0000 1.0000 2.0000
0.2000 0.2500 5.0000 3.0000 3.0000 0.5000 1.0000

Priority Vectorl
0.4273 0.2304 0.0206 0.0524 0.0524 0.1226 0.0943

Prioritv Vector2
0.4084 0.2264 0.0215 0.0577 0.0577 0.1277 0.1002

Figure 5.3 Priority Vector Computed by the Two Methods

109

3. Combining Parallel Judgements

In the original AHP, a decision problem is represented by a single instance of a

hierarchy structure. The elements in one level of the hierarchy (e.g., alternatives) have only

one importance matrix with respect to each one of the elements in the next lower level (the

root is at the lowest level). This next lower level may represent the criteria used for judging

alternatives. If a group of decision makers are involved in solving such a problem with this

structure, they have to agree on the importance matrices of all elements in all levels. Beside

being a tedious work to do, this does not seem appropriate in judgement situations where

different individuals with different opinions are involved in the process. What we need is

a structure that allows every stakeholder to explicitly and independently express his view

point and then combine these view points in some way. The final outcome is a group

decision while keeping each individual's judgement intact for future references. This is the

theme of our next improvement which we elaborate below.

Our solution to the above problem is to use multiple instances of the same decision

problem. Each instance is used by one of the participating stakeholders. Each stakeholder

uses the instance to establish the pairwise comparisons in all levels of the instance

hierarchy according to his preference. The system uses these comparisons to carry out the

intermediate computation in all levels of the hierarchy. The final outcome is a vector of

priority that weighs the available alternatives and a consistency index. Both reflect that

person's individual judgement.

Once the individual judgements are complete by all stakeholders, they are fed to

another manipulating process that combines them and comes out with a group judgement.

This latter result reflects the combined preference of all the stakeholders. The computation

here is automatic and does not require the intervention of the stakeholders. However the

manipulating process does need a uniform ranking list of all the stakeholders participating.

110

This can be done by an executive board which assigns a rank (from the AHP scale) to each

stakeholder. The executive board members assign equal ranks to themselves. This ranking

list is used by the system to automatically establish importance weights for all the

stakeholders. These weights represent the priority vector of the stakeholders and are

derived from the ranking list by simple manipulation of this list as follows:

r-
W; = where w,- and r,- are the weight and the rank of the stakeholder i

(n \

In
Vi = i)

respectively, and n is the number of the participating stakeholders. The result of this simple

manipulation is the same as computing it using an importance matrix. This is possible in

this special case because mapping the ranking list into an importance matrix makes this

matrix consistent. We provide the following theorem to prove that in this special case the

priority vector, though it is the result of a very simple manipulation, gives the same result

as if we compute it using the ranking list and the AHP importance matrix.

Theorem: The priority vector obtained from the ranking list by normalizing that

list by the sum of its element is an eigenvector of the importance matrix constructed using

the ranking list. Moreover this vector is a principal eigenvector ofthat matrix.

Proof: Assume that the AHP is used to fill an importance matrix S using the

ranking list for n stakeholders. An element a^ in S is given by: ai ■ = (r/rß where rt and

r} are the ranks assigned to stake holder i and j respectively. Therefore:

1. Since ranks in the list are drawn from the AHP scale, then for all a^j, ij = 1,2,.., n,

an > 0 which implies that S is positive (not to be confused with positive definite).

2. at j ■ a: k = (r/Tj) • (rj/rk) = (r/rk) = a^ k which satisfies the consistency

condition discussed in B.2

3. Also we have a •,- = r/ri = l/(r-/r •) = \/ai • for all ij = 1, 2,.., n which

ill

means that S is reciprocal.

Now consider multiplying S on the right by our vector w.

Sw =

[- "
rl r\ rl

rl r2 rn

r2 r2 r2 . .
rl r2 rn

rn rn rn
—— ~"~ . . "~"~

Lri r2 rn\

Wi

Wr

W,

_£ _± _f 1

r "1

r_i
rJ r_l

ri r2. rn

r2 rJ:
r2

rl r2 rn

r_n r_n r_n

rl r2 rn\

In
i=l L'

= nw

We started with Sw and reached to Sw = nw. This proves that w is an eigenvector

of S whose corresponding eigenvalue is n. Satty in [80] proved that a consistent matrix

satisfying the three conditions stated in B.3 has a maximum eigenvalue n. S satisfies these

three condition as we have just shown in 1. through 3. above. Therefore w is a principal

eigenvector (i.e corresponds to the maximum eigenvalue). This completes the proof.

Table 5.5 provides an example of a uniform ranking list for 5 stakeholders and the

weights computed automatically by the system according to the simple manipulation we

developed above.

Stakeholderj ri Wj

SHI 5 0.33

SH2 4 0.27

SH3 1 0.07

SH4 3 0.20

SH5 2 0.13

Table 5.5: Stakeholders' Weights

112

In this establishment the automation facility emulates the process of pairwise

comparing stakeholders without actually doing it. What makes this possible is the total

order imposed by the ranking list. This order enforces consistency in judging the relative

importance among stakeholders. We enforce consistency in this case only to avoid the

inappropriate way of pairwise comparing stakeholders.

The process of combining individual judgements into one group decision is

summarized in the following steps and illustrated in Figure 5.4:

1. Compute the stakeholders priority vector as explained above.

2. Stakeholders decide the criteria to be used in judgement and the number of hierar-

chy levels used to break down these criteria.

3. The system uses this information along with the automatically generated informa-

tion about the available alternatives to construct the problem hierarchy.

4. Every stakeholder participating is provided with an instance of the problem as con-

structed by the system.

5. Every participating stakeholder conducts the required comparisons in all levels

independently according to his preference.

6. Using these comparisons, the system computes a preference vector for each stake-

holder (wst) that reflects his opinion. An individual's consistency index is also com-

puted.

7. Once the computations related to all the individuals are complete, the system com-

bines the results obtained in 6. into one group priority vector that reflects the com-

bined group judgement. This latter vector is computed as follows:

• Construct a combined priority matrix Mßxri) where / is the number of

alternatives and n is the number of participating stakeholders. Mc is filled

column-wise. Each column in Mc is filled by the corresponding wst.

• Multiply Mc on the right by the priority vector (w) which gives relative

113

importance to stakeholders.

• The output of the above multiplication is a combined priority vector (w^)that

reflects the group decision in prioritizing the available alternatives given the

agreed upon judgement criteria.

In summery our improvement has the following advantages over the original

application of the method:

1. Provides each stakeholder with one instance of the decision problem to allow inde-

pendent judgements which is more appropriate in our context.

2. Simplifies the decision problem structure and handling.

3. Represents disagreements.

4. Supports distributed decision making. The original application is more suitable to

round the table kind of decision making.

5. Avoids the inappropriate way of comparing stakeholders.

114

Problem
Instances

Stakeholders

Individual
Judgements

1 1
\ \

w st\^^ wst ./"st

Combininj
Process

T\ Ranking
List

i

wg

Group
Judgement

Figure 5.4 Combining Individuals Judgements into a group Decision

4. Combining IBIS and the AHP

With our improvements introduced above, the AHP works very well as a

computational process. The method's strongest point is in providing judgements some kind

of concrete quantification. However it lacks the representation of the rationale and

justification for decisions. Also it is not capable of expressing the informal and rhetorical

information inherent in the early design deliberation process. Therefore our next

115

improvement is to combine the AHP and our view of the IBIS model. This combination

extends the capability of the IBIS model and the representation power of the AHP.

Our version of the IBIS as was introduced in Chapter III. has, among others, the

following differences from the original IBIS model:

1. Unlike IBIS, in our model issues have context and derivation way: they are synthe-

sized from the criticisms posed by the stakeholders in response to the system dem-

onstration.

2. Alternatives for resolving issues are identified using the requirements subsets

affected by the issues. Hence the deliberation is more specific and is not drifted far

from the subject debate. In the case of IBIS alternatives (positions) are based mostly

on brain storming ideas in which deliberation can easily be drifted out of the con-

text.

3. As a result an IBIS position in our context is represented by an object for the stake

holder and his judgement in choosing among the available alternatives. We call this

an individual's judgement profile or profile in short. Moreover, as we explained

above, we combine these individuals' judgements into one group judgement profile

or group profile for short. IBIS does not have the notion of group judgement (or

group position).

The above improvements, while keeping the spirit of the original IBIS, provide

better representation and control over the deliberation process. We are still keeping the

strong points of the original IBIS. One of these strong points is that despite the fact that the

IBIS model is based on some formality, yet it allows the recording of design rationale in a

largely informal manner. This makes the design deliberation more flexible. However

judgements in IBIS are not formal enough and moreover lacks quantification. In the IBIS

model, judgement is based on an implicit binary scale. A stakeholder supports or objects a

position. Also it is not clear in IBIS how decision are taken. Our understanding is that after

the formal deliberation is complete, another informal deliberation is needed to combine the

116

judgement of the deliberating individuals. This is needed to reach a decision by approving

one or combination of the positions. So we suggest combining IBIS with the AHP

motivated by the following:

1. IBIS serves in the representation of the design rationale along with their justifica-

tion.

2. IBIS provides the types and relationships capable of representing the informal

knowledge of the process.

3. The AHP provides the methodology for quantifying stakeholders judgements.

4. The AHP assists the task of combining judgements from different individuals to

reach final decisions.

E. Q-IBIS

We call the model resulting from combining the AHP and the IBIS models with the

above motivations, the Quantified IBIS or Q-IBIS for short. It has the IBIS types and

relationships plus the following extensions and improvements. These extensions and

improvements come form two sources: the first is the use of the AHP to quantify the IBIS

positions. The second comes from our augmenting the IBIS model with more types to

alleviate the following drawbacks in IBIS:

1. No explicit representation for stakeholders participating in the deliberation process.

2. No explicit representation for group positions.

3. No explicit representation for final decisions taken by the deliberating group.

4. No explicit representation for criteria of judgement. The existence of these serve

two folds:

• Make judgements more objective.

• Assist in creating more accurate judgements. An issue looked at from different

angles receives better judgement Moreover, broken down criteria assist in

synthesizing judgement from fine granularities.

5. No explicit representation for alternatives available for resolving issues. In require-

117

ments engineering, at least some kind of rough ideas about available alternatives is

normally there. It is better to represent alternatives and incrementally refine them as

more information become available than not representing them at all. In our context,

availability of alternatives is more concrete where deliberation is performed in

response to the demonstration of an executing prototype.

In the Q-IBIS we model the decision making problem as a network of types and

relationships. Types are represented by the nodes. The model has seven types as shown in

Figure 5.5. Relationships between types are represented by the links between nodes. The

Q-IBIS types and relationships are shown in Figure 5.5 and explained below:

Selects. ResolvedBy

Issue

MayRgsolve Res pondTo

Alternative
Prefers

^Affects

Q Position
Prefers

>> Criterion

Has. Supports/
Jbjects

Stakeholder Has QArgument

CR: Change Request

Figure 5.5 QIBIS Data Model

1. Types

1. An issues has the same meaning as in the original IBIS except that in our context

118

the set of issues axe predetermined.

2. Q_position has the same general meaning as in the original IBIS but it differs from

in the following:

• Q_positions are quantified judgement based on a formal model of quantification.

• Q_positions are further specialized into two subtypes: QI_position and

QG_position, for quantified individual and group positions respectively.

• QI_position represents the preference of a specific stakeholder in resolving an

issue using the available alternatives. It has attributes that carry an individual

judgement profile.These include the pairwise comparison matrices as

constructed by him, different importance (for criteria) and preference (for

alternatives) vectors, and different consistency indices.

• QG_position represents the combined preference of all the participating

stakeholders. It has similar attributes to the above but it carries the group

judgement profile.

3. Q_argument has the same general meaning as an argument in the original IBIS but

here it is, like Opposition, further specialized into QI_argument and QG_argument

with the same motivation. This type has textual attributes that describe the reasons

or any assumption behind an individual or the group preference.

4. Criterion of judgement to guide stakeholders in the selection process and make

judgements more subjective. Stakeholders must agree from the beginning on the set

of criteria and their detail. The detail in the criteria hierarchy is represented by

PartOf relationship.

5. Alternative includes the requirement subset to be manipulated for resolving an

issue. It also includes the kind of manipulation required. The manipulation is con-

cerned with changing, deleting, or creating new requirement components.

6. Change Request (CR) represents the group final decision to resolve an issue. It

specifies the selected alternative or alternatives and what the exact requirements

change needed in the requirements subset of each selected alternative.This type

119

allows the stakeholders to also override the automatic process decision if the group

sees a reason for. Many attributes can be valuable here. Deadline for accomplishing

the work required by the change request, and a textual description that record the

statement of the new requirements or the changes in existing ones are examples.

2. Relationships

Our extension and improvement of IBIS introduces new relationships. Some of

these relationships has no correspondence in IBIS while others are improvements over IBIS

ones. The improvement makes these relationships more expressive and objective. Some of

the original IBIS relationships are not needed in our context. For example the generalizes/

specializes relationships that links an issue object to another is not needed during the

deliberation process. Deliberation is conducted on a predetermined issues and alternatives.

Issues are synthesized and analyzed before being deliberated. However our Q-IBIS is

flexible enough to include such relationships if needed in another context.

1. Has: links a stakeholder to Opposition or Q_argument(s). It is one-to-one when it

links a stakeholder and OJLposition and many-to-one in the case of QG_position. It

is one-to-many in the case if Q_argument is specialized to QI_argument and many-

to-many if it is specialized to QG_position.

2. Supports/Objects: links a Q_argument to a Q_position. These are original IBIS rela-

tionships. The value supports is the default value between a Q_argument and

Opposition objects owned by the same stakeholder. Notice that a stakeholder has

only one Opposition and maybe many Q_arguments. This allows a stakeholder to

informally record his support or objection on others' Oppositions. Therefore this

relationship is many-to-one in both specialization of the Q_argument.

3. Prefers: links a Q_position to a criterion or an alternatives. This relationship has an

attribute strength that quantify the stakeholder preference. The value of this attribute

is filled automatically from the priority vector that expresses that stakeholder prefer-

ence for criteria or alternatives. This relationship is many-to-many in both cases

120

4. Affects: links an issue to the criteria affected by the issue. This relationship although

apparently is one-to-many (one issue has many criteria), it is made many-to-many to

reuse criteria among different issues.

5. RespondsTo: links a Q_position to an issue. A position responds to only one issue

and an issue is responded to by many Q_positions. This means that the relationship

is one-to-many.

6. MayResolve: links an alternative to an issue. This relationship is many-to-one.

7. ResolvedBy: links an issue to the change request that resolves it. Normally this is a

one-to-one relation. However it is made one-to-many to account for situations

where more than one alternatives are selected for resolving an issue. This selection

has the purpose of comparative study of alternatives by prototyping more than one

alternative.

8. Selects: links a change request to the alternative(s) selected to resolve an issue. This

is many-to-many relationship for the same above reason.

F. THE APPLICATION OF THE IMPROVED AHP PROCESS

The application of the AHP process in our context fits in the alternatives evaluation

and selection process. It supports stakeholders to express their individual judgements and

assists in combining these into group decisions. By using the improved AHP, Q-positions

are no longer based on a binary scale of judgement as in the original IBIS. Using Q-IBIS,

a stakeholder can express his preferences for available alternatives in a more smooth and

quantified measures. Also the use of the AHP enables the use of the criteria of judgement.

This makes the judgement more objective and bases it on deeper considerations. The

application of the AHP in this way makes direct involvement of the stake holders not only

through criticizing the demonstrated system, but also sharing in the way these criticisms

should be remedied.

The decision support mechanism assists stakeholders in some other way. It

augments available alternatives with important information for the stakeholders to consider

121

in their judgement. The available alternatives are attributed by this information. This

information is computed for each alternative. The decision support automatically supply

the corresponding values. This information includes for each alternative some rough

estimates of the effort required and the complexity associated with that alternative. It also

includes the availability of the resources to carry out the implementation of each alternative.

The estimated values of these attributes are represented by the following:

1. Effort: represented by the number of the new PSDL modules required to resolve the

issue by taking that alternativesi_New). We explained in the previous chapter how

this value is computed.

2. Complexity: represented by the number of the affected PSDL modules

(P)_Affected). We explained in the previous chapter how this value is computed.

3. Resources Availability: represented by the availability of designers of the required

expertise field and level to carry out the design and implementation of the selected

alternative. This is computed by searching the designer's pool in the design data-

base for objects that meets the requirements.

A session in this decision making process proceeds as follows:

1. The system builds a structure of the system using the following information:

• The subject issue.

• The set of judgement criteria (organized hierarchically if they constitute more

than one level of the problem hierarchy).

• The available alternatives.

2. The system links the issue, criteria, and alternatives with the proper links according

to the Q-IBIS.

For each of the participating stakeholders, the system presents:

3. An instance of the problem hierarchical structure linked to the stakeholder object.

The instance shows the index and the content of each level of the hierarchy. The

minimum is one level for the criteria of judgement (general concerns) and another

for the available alternatives plus the root.

122

4. Amplifying information for each alternative concerned with:

• The requirement components affected, the anticipated effect, and any new

requirement components to be added.

• The computed values of the effort, complexity, and resources availability.

5. A user interface that allow the stakeholder to:

• Conduct the pairwise comparison of the criteria that reflect their relative

importance with respect to the debated issue.

• Conduct the pairwise comparison of the alternatives that reflect their relative

importance with respect to each of the criteria.

6. The scale to be used in the comparison process with enough interpretation.

7. A user interface that allow the stakeholder to informally express his argument,

assumptions, or any other concerns

Enabled by this support, the stakeholder compares the criteria in pairs. Once he

indicates the end of his comparisons, the system performs the intermediate computation to

calculate a priority vector and a consistency index for the criteria that reflect that

stakeholder judgement. The same actions are then repeated for the alternatives with respect

to each of the criteria. The final result is a priority vector and a consistency index that

prioritize the available alternatives with respect to the issue under consideration.

The results of the above process are used to automatically fill the attributes of the

QI-position of the stake holder. The object of the stakeholder is then linked to this Op-

position and QI-argument of that stakeholder using has link.

When all stakeholders are done, the system combines their judgement into one

group position as wes explained (see page 113). The group is presented with an QG-

argument object to record any informal information. The group then reviews the selection

of the automated process, adjust it (if necessary), specify a deadline, and approve the

outcome. This outcome is a change request to be implemented.

123

124

VI. CONCEPTUAL DESIGN OF THE DATABASE

This chapter discusses the conceptual design of the physical data storage that

supports the requirements capture and evaluation. The choice of an individual

implementation strategy should not affect the integrity of this conceptual design. Issues to

be considered here are identifying the process entities, their properties, and the

relationships that tie these entities. Entities are mainly derived from the conceptual model

elements discussed in Chapter in.

A. DESIGN CONSTRAINTS

The design of the data storage of the requirements analysis and evolution system is

not only constrained by functional requirements, but also by requirements dictated by

CAPS. Categories of requirements that must be met by the system are as follows:

1. General Constraints

According to the data characteristics, the system must satisfy the following basic

requirements which involves the background requirements:

1. For each prototype, the data storage should store the following pieces of informa-

tion each with its relevant attributes and relationships. The storage is for both cur-

rent as well as the historical values (if applicable) to support recording the rationale

of the process:

• Stake holders: this include individuals directly involved in the process either from

the design team or the customer side.

• The evolution graph with all its elements and relationships. This includes the

following:

- The set of software components: criticisms, issues, requirement components,

PSDL components, and implementation components.

- The set of analysis and design steps.

125

- The different types of edges that represent the relationships among the system

parts as we discussed in Chapter III.

2. There is an extensive amount of specialization inheritance in the structure of the

conceptual model which requires that the database schema design should support an

object-oriented database system.

3. In modelling ill-structured real world problems, analyzing them , and creating

design artifacts based on the modelling is better represented by a set of complex

objects along with their relationships. This requirement is best served by having the

database schema design support an object-oriented database system.

4. The mapping between reality, our conceptual model, and the prototyping model (the

underlying software development model) is better served by designing the database

schema to support object-oriented database [75].

5. Abstraction is a good way to hide irrelevant details. Therefore it is a thinking style

that should be used to assist in comprehending customer needs more accurately.

Object-Oriented modeling provides us with better abstraction facilities than other

data modeling approaches. This requirement necessitates that the database schema

design should support an object-oriented database system.

6. Because an object-oriented requirements specification is easier to understand by a

customer than a functional specification, a database schema design should support

object-oriented database.

7. The design database repository should allow managers, analysts, and designers

(through a chain of responsibilities) to directly maintain and manipulate the reposi-

tory content.

2. Constraints Imposed by CAPS

Since the data repository will be used to support an integral part of CAPS, this

repository should meet the CAPS's specific requirements and constraints [67]:

l.The repository must be accessible in the UNIX based workstation, such as Sun or the

126

compatible platforms.

2. The repository must be accessible in X-windows or the compatible windows envi-

ronments.

3. Functional Constraints

3. The repository should support the basic database manipulation functionality, such

as append, delete, modify, browse, backup, etc.

4. To track the evolution of software components given by our model graph over time,

the database repository should provide facilities for multi-versions management.

5. The repository should support teamwork by providing mechanisms for concurrency

and management of private and shared space.

6. The repository should be flexible in providing persistence for any kind of data struc-

ture because of the multi-type attributes the repository is expected to provide stor-

age management to. This requirement also necessitates that a database schema

should be designed to support object-oriented data modeling [60].

B. DATABASE SCHEMA DESIGN

The most important and difficult task for many database applications is the database

design, often referred to as a data model or schema design [43]. It is clear from the above

section that satisfying many design requirements, our schema should be designed to

support an object-oriented data model. Such a model supported by the appropriate object-

oriented database engine maps our conceptual model easily and naturally to the repository

domain while keeping the implementation strategy independent on the schema design. In

an object-oriented database design, the classical notion of a database schema is replaced by

that of a set of classes or types [56] along with their attributes (properties), associations, and

operations (methods). In the following subsections we discuss these issues and elaborate on

some design decisions.

127

1. Types

All types of our schema are Abstract Data Types (ADTs). An ADT consists of a

value set and a set of primitive operations that work on the value set. The instances of the

value set are called the instances or objects of the type. An ADT can be either mutable if it

has a an internal memory (state), or immutable if it does not. Instances of mutable types can

be created, modified and destroyed by its primitive operations. Instances of immutable type

can not be changed; a new instance is created whenever some change is needed.

In our schema we have both mutable and immutable types as shown in Table 6.6.

It is quite reasonable to have the Human type as mutable and Version type and its subtype

immutable. Step could be either mutable or immutable depending on the intended use. In

our current design we chose to make Step type mutable. In an application where audit trails

and/or contingency planning are required for process assessment or studying different

design alternatives through e.g., design replay, the type Step should be immutable.

The schema types do not include a description for some of our Q-IBIS types.

Specifically Alternative, Criterion, Position, and Argument are not included. The reason is

that these types need a through examination regarding two points: representing them as

attributes of existing types (e.g., issue) or as independent types. The second point is

concerned with treating them as mutable or immutable types if they are represented as

independent types.

Mutable Types Immutable Types

Object Version

Human Criticism

Domain_Relation Issue

Versioned_Object Requirement_Component

Component_Reference PSDL_Component

Step Implementaion_Component

TABLE 6.6. Mutability of the Schema Types

128

2. Schema Type Hierarchy

As shown in the type structure of the schema shown in Figure 6.1, the schema

contains fourteen types. Each of these types represents an element in the dependency graph

of our conceptual model discussed in Chapter in. except Object type. Object type is the

implementation vehicle of persistence in the object_oriented data model of ONTOS DB

which we use as the object-oriented database engine. An object is persistent if it has life

time that can extend beyond that of the process in which they are created.

Object

I
Human

Relation,
Domain

1
Versioned

Object

f
i

Step

I
I

1
Version

Analysis Step
1

Design Step

Component,
Reference

I
Criticism

I
Issue

I
Req.

Component

I
PSDL

Component

1
Implementation

Component

Figure 6.1 Schema Type Structure

129

All instances (objects) of our schema types axe persistent The notion of persistence

is central to the design and use of databases in general. The process of handling persistence

in traditional database models (e.g., relational model) often involves conversion between

the data structure used in the programming language and that used in the database. This

adds the burden of writing code that translates between the disk resident representation of

data and the in-memory representation used during execution. In object-oriented database

the situation is different No special constructs or very few such constructs are needed for

storing and retrieving persistent data from the object-oriented database [75].

C. SCHEMA DESCRIPTION

In the following subsections we give the relevant attributes and operations defined

over all types of the schema. We also discuss some design decisions and alternatives and

highlight some notions. All types have an operation called Create JType where Type is one

of the eight schema types. This operation constructs a new instance (object) of the type and

gives initial values to its attributes.

The underlying object-oriented database engine we selected is ONTOS DB

database which is an object oriented database and uses C++ as a data definition and

manipulation language (DDL, DML). Persistence allows a C++ object to be stored and

retrieved from an ONTOS DB database.

1. Type Object

The type Object is the most general type. All other types are directly or indirectly

subtypes of type object. All instances of this type and all its subtypes are persistent. This

type is predefined in ONTOS DB to implement object persistence. Persistence of objects

can be implemented in different ways [13]:

1. By Typing: we can declare that some types are persistent, thus every instance object

of that type is persistent.

2. By Reachability: if an object is connected , through direct or indirect reference, to

130

some persistent root, then the object is persistent.

3. By Storing: if there is a persistent space, then every object explicitly bound into this

space is persistent.

4. By Object Indication: there can be some parameters associated with the object

which indicates whether the object is persistent or not

ONTOS employs the second approach for implementing object persistence where

the Object type is the root of all persistent types. It is required that any persistent type be

directly or indirectly a subtype of the Object type. Any type that is directly or indirectly

derived from Object inherits all the capabilities that makes it persistent.

Table 6.7 and Table 6.8 summarize some relevant attributes and operations

provided by the Object type. putObject saves an object into the database; deactivates it.

lookupObject: looks up an object in the database and brings it into the application cache;

activates it. DeleteObject from memory: deletes the in-memory copy and retains the DB

copy. The names of these operation are given here abstractly; refer to [90] for exact names

and signatures.

Attributes

Name Type

ObjectName String

TABLE 6.7. Attributes of Object Type

131

Operations

Operation Effect

putObject (into DB) Stores the object in the database with the option of deleting or
retaining the in-memory copy

lookupObject Retrieves the object from the database using its name and acti-
vates a copy in main memory

deleteObject (from DB) Deletes the object from the database and deallocate the memory
space

deleteObject (from memory) Deletes the in-memory copy of the object with the option of deal-
locating memory space. The database copy is not affected

set ObjectName Gives the object a name. The default is NULL

get ObjectName Retrieves the name of an object

TABLE 6.8. Operations of Object Type

2. Type RelationDomain

The Relation_Domain subclass is a general type used to realize the different binary

relations embedded in the other types of the schema. It is needed only because ONTOS DB

database does not directly support association between objects. Refer to Figure 6.2 that

depicts an Entity-Relationship diagram showing an abstracted view of the relationships in

the schema. Most of the superclass-subclass associations (inheritance) are shown in Figure

6.1 and are not repeated here. Also associations of the type Version are inherited by the

different software components and was discussed and depicted in Chapter HI.

Instances of the Relation_Domain type are directly inherited by the "Step" and

"Version" types. The RelationJDomain subclass provides each of its subtypes with two

instances for each embedded binary relation found in every subclass. One instance

represents the forward direction of the relation, and the other represents the reverse

direction (the inverse relation).

132

Figure 6.2 Abstracted E-R Diagram for the Schema Relationships

133

Each of the embedded binary relations relates an object from the relation domain

type to a set of objects of the same or different type of the relation codomain. The inverse

relation provide the same representation with the roles switched between the domain and

the codomain. For each direction, the Relation_Domain provides a container for the set and

a group of operations that work on it. This group provides for adding or removing a

codomain object form the relation, computing the cardinality of the codomain objects in the

relation instance, and finding out whether a codomain object is directly or transitively

related to a given domain object.

The Relation_Domain subclass also provides two iterators for each direction of the

relation. The first iterator is the direct iterator which iterates through the codomain objects

of the relation and generate each. The second one is the transitive iterator which does not

only iterate through and generate the directly related codomain objects, but also does the

same recursively for all objects related by the same relation instance to each codomain

object viewed as a domain object and has other objects related to as codomain objects. For

example assume that an objects is related to an object y by the Relation_Domain instance

R where x is from the domain of R and y is from the codomain of R (denoted as xRy). Also

assume that y is related to a third object z; i.e., yRz. The transitive iterator provided by the

Relation_Domain instance inherited by the object x generates y as well as z and any other

object in the transitivity chain (the Kleen Star). Refer to Chapter VII. for implementation

details and constraints of the transitive iterator. Both iterators; the direct and the transitive,

are abstracted from a set of primitive operations that allow for creating, re-initializing, and

destroying the iterator. They also allow for generating the next element as well as querying

whether there are still more elements to be generated.

Macros are used to generate the Binary_Realation instances required to represent

the embedded Relation_Domains in each of the types that inherits it. The reason for using

macros are as follows:

134

1. Partially, because the version of ONTOS DB we are using does not support the new

C++ template constructs which allow the development and reuse of generic types

that can be instantiated to provide the same functionality for different types supplied

as generic parameters.

2.Even with its availability, the C++ template constructs is not be flexible or enough to

accommodate the generic scale we are willing to represent. We are not only seeking

generic types as provided by C++ templates, but in addition we are seeking generic

identifiers and naming to also verbally as well as functionally represent all binary

relations embedded in different types of the DB schema.

The attributes and the behavioral operations provided by the Relation_Domain type

are summarized in Table 6.9 and Table 6.10. The attributes and operations are given in a

generic way and are instantiated appropriately by different types that need so. The

instantiator provides a subject_role and object_role names for both directions of the

relation. The subject_role name is used mainly in naming the instance and the objectjrole

is used in the rest.

Attributes

Name Type

Object_role Set{ Objects}

TABLE 6.9. Attributes of the Relation Domain Type

135

Operations

Operation Effect

"add_"object_role Adds an element to the codomain elements set

"remove_"object_role Removes an element from the codomain elements
set

"cardinality_of'object_role Returns the number of the elements in the codomain
set

"is_direct_"object_role Querying whether a given object is currently related
to a given domain object

"is_transitive_"object_role Querying whether a given object is currently transi-
tively related to a given domain object

Direct_Codomain_iterator A set of primitive operations that implements a
direct iterator.

Transitive_Codomain_iterator A set of primitive operations that implements a tran-
sitive iterator

TABLE 6.10. The Operations of the RelationDomain Type

As an example assume we are representing Uses relation between a software

component and another set of components (either of the same or different types), the

forward relation has user and usee as the subject and object roles respectively. The inverse

relation has both names switched. The instance name is userjlomain and usee_domain for

forward and inverse directions of the relation respectively.

The attributes and operations that the instance of the forward direction of the uses

RelationJDomain has are shown in Table 6.11 and Table 6.12 below with the proper

indicative naming.

Attributes

Name Type

Usee Set {Version}

TABLE 6.11. The Attributes of an Example instance of RelationDomain Type

136

Operations

Operation Effect

add_usee Add usee to the codomain set of the user object

remove_usee remove usee from the codomain set of the user
object

cardinality_of_usee calculate and return the number of the usee objects
currently in the codomain set

is_direct_usee Querying whether a given usee is directly related to
a given user object

is_transitive_usee Querying whether a given usee is transitively
related to a given user object

Direct_usee_iterator A set of primitive operations that implements a
direct iterator that works on the usee set directly
related to a given user object

Transitive_usee_iterator A set of primitive operations that implements a
direct iterator that works on the usee sets transi-
tively related to a given user object

TABLE 6.12. The Operations of an Example instance of Relation_Domain Type

The embedded binary relations found in other types and is represented by

instantiating the Relation_Domain Type are as follows

1. Step:

• PartjOf

• SubSteps

• Primary Jnput

• SecondryJnput

• Output

2. Version

• PartOf

• Subcomponents

• Uses

• UsedBy

• Affects

137

• AffectedBy

• PosedBy

• Input_For

• Secondry_Input_For

• Output_For

• Predecessor

3.Human

• Poses

For each of these embedded binary relations there are two instances of the

RelationJDomain type. The operations required for constructing, updating, and

manipulating each relation in both directions is readily available. Other required operations

may also be synthesized from the already available primitive operations.

For example, for Substeps relation, operations like addjubstep, remove_substep,

cardinality_of_substep, is_direct_substep, and is_transitive_substep is readily available to

the forward direction of the relation with the appropriate naming. As an example for a

computed operation is finding the top level step of a given step. This operation uses the

iterator provided by the PartOf relation of the given step to iterate through the related

objects (Steps) and return the object that has null parent.

Another important issue related to the discussion here is maintaining any one

instance of the Relation JDomain type consistent in both direction. We accomplish this

requirement by keeping an invariant that ensures whenever applying any destructive

operation (e.g., add or delete) on any direction of the relation, the corresponding operation

defined over the other direction is triggered automatically. For example adding a

subcomponent X to a parent component Y automatically triggers the operation defined on

the PartOf instance of X to add Y to the parents of X. In this way both the relation and its

inverse are kept consistent all the time.

138

3. Type Human

Type Human represents persons involved in the process either from the customers

or the design and analysis team. The relevant information about an individual involved in

the process are name, roles, organization, skill, and availability status. The name attribute

is directly inherited from the immediate superclass Object. Roles set for the design and

analysis team is known and more specific than for customer individuals. For design and

analysis team this set includes: designer, analyst, and manager. For customer individuals,

it varies from one application to another. Therefore it is considered application defined.

Organization attribute refers either to individuals from the prototype team

(designers, analysts, or managers), or individuals from the customer side. In the latter case

this attribute carries the name of the organization financing or sponsoring the project. It is

represented as a set of strings instead of a single string to account for cases where the

project is financed or sponsored by more than one organization.

For the prototype team, a skill represents the different fields of expertise for a team

member and the member skill in each of this fields. For a customer individual it represents

that individual's skill for each role he plays in his organization. For example, John Smith

has the roles "Sales" in ALM company and his skill in "market analysis" is Medium, and

in "Company priority" is High. The skill attribute is represented by a map from strings to

enumeration. We chose the domain of the map to be a string instead of another enumeration

to avoid restricting the set of expertise fields.

The attribute Status is an enumeration telling whether an individual is currently

available or busy. This attribute makes more sense for individuals that belong to the

prototype team and is very important for planning and task assignment activities. For

customer individuals it can assist in planning the prototype demonstrations by knowing the

availability status of the customer individuals. However in the latter case, this attribute is

139

required to model more information to elaborate on the availability periods. This

elaboration is useful also in the case of the team individuals for planning purposes and will

be more effective if a reason is attached to the non-availability status of an individual (e.g.,

specifying whether a designer is busy assigned to another task or on leave, etc.).

Li addition to the set of operation defined over the above attributes, a set of other

primitive operations were added to abstract an iterator to iterate through the individual

elements and generate each person. The latter set of operations allow for constructing and

initializing the iterator as well as freeing the memory it is allocated. The iterator provides

the check whether there are still more elements to generate and generate each. Type Human

directly inherits from Object and has no subclasses. Human attributes and operations are

shown in Table 6.13 and Table 6.14.

Attributes

Name Type

Roles Set{ string}

Organization String

Skills map[(exp_field: string) -->
enumeration]

Status Enumeration

Poses (inherited) Poses_Domain

(instance of Relation_Domain)

TABLE 6.13. The Attributes of the Human Type

140

Operations

Operation Effect

set_organization Assigns a new value to an individual's organization

get_organizatio Retrieves the value of an individual's organization

add_role Adds a role to an individual's roles set

removejrole Removes a role from an individual's roles set

cardinalty_roles Returns the number of roles of a specific individual

set_status Assigns a new value to an individual's status

get_status Retrieves the value of an individual's status

find_designer looks up and retrieves an individual's from the data-
base using his name

add_skill Adds an expertise field and an associated expertise
level to an individual's skills map

remove_skill Removes one of the expertise fields and the corre-
sponding expertise level from an individual's skills
map

change_skill_level Changes the skill level associated with a given
expertise field for an individual

generate_designer (iterator) A set of primitive operations that implements an
iterator that iterate and generate all individuals in
the database

TABLE 6.14. The Operations of the Human Type

4. TypeVersionedObject

Type Versioned_Object encompasses a sequence of variation lines of one object

identified collectively by an object id. A variation line abstracts a sequence of versions of

the same versioned object. Each of the sequence elements is a frozen state of the object

which either evolved from the previous version, an initial creation, or as the result of a

decomposition of a composite versioned object. An evolution step is required for a version

to evolve from an existing version or to be created as a decomposition of a parent

component. For a version to evolve from an existing version, the existing version must be

141

one of the inputs of the evolution step and the new version must be one of the outputs for

the step.

A variation works as a building block for the versioned object type. Initially a

versioned object has only one variation line. Each time a new version is created is added to

the end of that variation line until the need arises for splitting a new variation line. A new

variation line is split only if every predecessor (to be defined in the context of the "Version"

type) of the newly created version is either:

• Not current, (see Figure 6.3), or

• Has a gap in version number (see Figure 6.4).

The first case is illustrated by the following evolution graph

Figure 6.3 New Variation Split: Casel [69]

The current version of a variation is the version with the maximum version number

among all versions that belong to the variation line. In the figure above, the current version

of the variation VI is V1.4 but step s3 has V1.2 as a primary input. This situation requires

the split of a new variation V2. The new version V2.3 will have V1.2 as a predecessor.

The second case applies to merge cases as shown by the following evolution graph

where the changes in VI.4 and V2.4 are merged by the step s6 resulting in the new version

VI.5 along the first variation line. After that, step s7 is merging VI.4 and V2.3 and none

of them is current, so a new variation V3 is split.

142

1 Vl.l \M slH V1.2|-rfs2)-H V1.3 \-M s^H V1.4 H- /s^> V1.5

>(s4)-> V2.3 -V «^-» V2.4M

^2^V3.5

Figure 6.4 New Variation Split: Case2 [69]

Another question related to the merge case is what existing variation the merge

result belongs to if it does not split new variation. The new version of the merge result will

belong to one of the existing variation lines that must satisfies the following three

conditions simultaneously:

• The version number of the merge result must be maximum value.

• The version number of the predecessor version on that variation line + 1 = the

version number of the merge result.

• The predecessor version (node) must be the current version of that variation line

at the merge time.

One set of the attributes and operations defined on the "Versioned_Object" type

works directly on a given "Variation". Operations that will be used the most for a

Versioned_Object is adding a version to the end of a variation line or finding a version

given its version and variation numbers.

The Description attribute is a string summarizing the functionality or any other

specific semantic related to the versioned object. It is specially useful for newly proposed

requirements and PSDL components as part of resolving an issue. If the alternatives

encompassing these components are finally rejected as a result of the resolution, these

143

components are not added to the configuration. At this point the rejected components are

just drafts; only a few attributes are assigned meaningful values, Description is one of

them. This attribute makes future references to the rejected components more fruitful. We

give another related attribute in subsection 6.

The Type "Versioned_Object" also includes a sequencer for controlling the

evolution process of the object. It directly inherits from "Object" type and has the type

"Component_Reference" as a subclasses. The attributes and operations of this type are

shown in Table 6.15 and Table 6.16 respectively.

Attributes

Name Type

version_map map [tuple [ver,var: id#] -->

version]
length map[(var: id#) --> natural]

current_var var_id

Object-Sequencer Sequencer

Description String

TABLE 6.15. The Attributes of the VersionedObject type

Operations

Operation Effect

find_version Finds and returns a version given its version and
variation numbers

nnd_current_version Finds and returns the current version in a variation
given the variation number of the variation it
belongs to

add_version Adds a version to the end of a variation line. It
becomes the current version of that variation line

TABLE 6.16. The Operations of the Versioned_Object type

144

Operations

Operation Effect

set_current_var Sets the current variation of a versioned object.

get_current_var gets the current variation of a versioned object

find_recent_common_version Finds and returns the version with the maximum
version number common to a merge result

TABLE 6.16. The Operations of the VersionedObject type

5. Type Version

As was indicated earlier the "Version" type represents a frozen state of an object. It

abstracts the idea of an evolving software component. In our context it is used to represent

Criticisms, Issues, Requirement, and PSDL Components. A PSDL component represents

in principal a PSDL operator (composite or atomic) which has one specification and

another implementation component linked together by 'uses" relation. The type version is

general enough that can represent (either as is or through specialization) any other kind of

software components e.g., test cases.

A version belongs to one or more totally ordered variation line. Its variation_id and

version_id determines which Variation it belongs to and where it is located in the variation.

Each version has a predecessor which is a set of versions that contains all versions in all

variation lines that proceeds the version. The predecessor set contains at least one version

except for the first version in the first variation termed base_yersion that has an empty

predecessor set. For example in Figure 6.4 the predecessor set of version V3.5 includes

V1.4 and V2.3 and the predecessor set for VI.1 (which is the base_version too) is empty.

Type Version inherits from instances of Relation_Domain type which is very useful

in representing the embedded binary relations to be kept by the type Version. It is the

superclass for Criticism, Issue, Requirement_Component, and PSDL_Component. The

"type" attribute relates a version to the type of software components it represents.

145

Dependencies among these different software components can be traced down and up

employing the "Used_By" and "Uses" Relations. The "used_by" instance of the

Relation_Domain type inherited from "version" type links a requirement component to a

PSDL component and can be used in the trace from requirement down to the implementing

PSDL component(s). The other direction of the trace is given by the "uses" instance of

"Relation_Domain" type defined on a PSDL component. The "required_by" identifier

string of the PSDL component can be filled from the requirement component that PSDL

component uses.

In Table 6.17 and Table 6.18 below we give the attributes and operations defined

over "Version" type. We do not give operations specific to the embedded binary relations

since they have been elaborated in detail earlier. Another important attribute is the

"Content" which provide a container along with some operations for a set of text files along

with their names associated with the version.

Attributes

Name Type

version_id Natural

variation_id Natural

time_created time

created_by String

PartOf (inherited) Part_Of_domain

(instance of Relation_Domain)
Subcomponents (inherited) Subcomponent_domain

(instance of Relation_Domain)
uses (inherited) usee_domain

(instance of Relation_Domain)
usedBy (inherited) user_domain

(instance of Relation_Domain)

TABLE 6.17. The Attributes of the Version type

146

Attributes

Name Type

Affects affecting_domain

(instance of Relation_Domain)
AffectedBy affectedBy_domain

(instance of Relation_Domain)
PosedBy poser_domaain

(instance of Relation_Domain)
Prirnary_Input_for (inherited) Primary _Input_for_domain

(instance of Relation_Domain)
Secondry_Input_for (inherited) Secondry_Input_for_domain

(instance of Relation_Domain)
type Enumeration

Output_Of (inherited) Output_Of_domain

(instance of Relation_Domain)
content map[(file_name: string)

~> string]
predecessor Predecessor_domain

(instance of Relation_Domain)

TABLE 6.17. The Attributes of the Version type

Operations

Operation Effect

set_version_id Sets the version id of a given version

get_version_id Gets the version id of a given version

set_yariation_id Sets the variation id of a given version

get_variation_id Gets the variation id of a given version

set_time_created Sets the time the version was created

get_time_created Gets the time the version was created

set_created_by Set the name of the analyst or the designer who cre-
ated the version

get_created_by Get The name of the analyst or the designer who
created the version

TABLE 6.18. The Operations of the Version type

147

Operations

Operation Effect

set_type Sets the type of the version (should not be defined
as an attribute of versioned_object???)

get_type Gets the type of the version

add_text_file Adds a text file to the content map of the version.

delete_text_file Deletes a text file to the content map of the version

get_file_names Gets the file names of the content of the version

find_text_file Finds and returns a text file that belongs to the con-
tent map of the version. The file is given by its
name.

cardinality_text_files Returns the number of text files the version has.

TABLE 6.18. The Operations of the Version type

6. Type Component_Reference

When an analysis or evolution step is proposed and before it is assigned to a

designer, it is known what a versioned_object it applies to. However, it is not known what

specific versions of which it applies to. Therefore from the time proposed until its primary

inputs are bound to specific versions, a step primary input is tied generically to a

versioned_object given by its id. Once the specific primary input set becomes known, the

step binding is changed to those specific input versions. For this reason the

Component_reference is used to play both roles; the generic and the specific one. It inherits

from versioned_object type to play the generic role and from version type to play the

specific role.

This type also plays an important role for the newly created versioned objects. As

we explained in Chapter HL, new requirements and PSDL components may be proposed in

the process of exploring and analyzing the impacts of available alternatives for resolving

an open issue. The binding of these newly created components is not known until after the

issue is resolved by choosing one or more alternatives. The components affected by the

148

taken alternative is then bound to specific versions. The other components are not bound

but remain in the database as part of the analysis and design history. Since these latter

components do not and may not represent a part of the current or the future configuration,

representing them by component reference objects is a reasonable solution. To differentiate

between component reference objects in this case and other cases, we associate one

attribute with this type as a discriminator. The 1'sUnder-Analysis attribute is of type Boolean

that has the value True if an object of the component reference type is not part of the

configuration, and False otherwise.

7. Type Step

Type Step represents a design or analysis step. It directly inherits from six instances

of the Relation_Domain type. Those instances are used to represent six embedded binary

relations inside the "Step" type as was discussed previously. In addition to those inherited,

type step defines more properties and operations of its own. Type "Step" has two subclasses

derived from: analysis and design steps. These two subclasses are different in their

semantic content and their approval rules as was discussed in Chapter HI. Other than that

both subclasses have basically the same set of attributes and operations. Although both

types can be easily differntiated by the type of the input set to the step, the attribute type is

added to the parent type "Step" to easily differentiate between both. Having this attribute

can also help clustering each subtype objects in storage which may contribute in speeding

up the process. Table 6.19 and Table 6.20 contain the relevant attributes and operations

defined on the type "Step". Again we do not include the operations defined over the

embedded relations.

149

Attributes

Name Type

step_id Natural

step_type Natural

priority Natural

designer String

requixed_skill Enumeration

status Enumeration

start_time Time

finish_time Time

duration Time

estimated_time Time

deadline Time

date_created Time

date_of_current_status Time

Part_Of(inherited) parent_domain

(instance of Relation_Domain)
Substeps(inherited) substep_domain

(instance of RelationJDomain)
Primary_Input (inherited) primary_input_domain

(instance of Relation_Domain)
Secondry_input (inherited secondry_input_domain

(instance of Relation_Domain)
Output Output_domain

(instance of Relation_Domain)

TABLE 6.19. The Attributes of the Step type

150

Operations

Operation Effect

set_step_id Sets the step id

get_step_id Gets the step id

set_step_type Sets the step type

get_step_type Gets the step type

set_priority Sets the step priority

get_priority Gets the step priority

set_designer Gets the designer to be assigned the task associated with
the step activity

get_designer Sets the designer to be assigned the task associated with
the step activity

set_required_skill Sets skill required to perform the task associated with step
activity

get_required_skill Gets skill required to perform the task associated with the
step

set_status Sets the step status

get_status Gets the step status

set_start_time Sets the step start time

get_start_time Gets the step start time

set_finish_time Sets the step finish time

get_finish_time Gets the step finish time

set_duration Sets the step duration

get_duration Gets the step duration

set_estimated_time Sets the step estimated time for completion

get_estimated_time Gets the step estimated time for completion

set_deadline Sets the deadline by which the step should be completed

get_deadline Gets the deadline by which the step should be completed

set_date_created Sets the date the step was crated (proposed)

TABLE 6.20. The Operations of the Step type

151

Operations

Operation Effect

get_date_created Gets the date the step was crated (proposed)

set_date_of_current_status Sets the date of the step current status

get_date_of_current_status Gets the date of the step current status

TABLE 6.20. The Operations of the Step type

8. Other Types

The rest of the types in the schema represent different categories of software

components encountered in the analysis and design process. These include criticisms posed

by human individuals in response to the demonstration of the prototype, issues to be

resolved to take into account the justifiable criticisms, requirement components, and PSDL

components. All of these types are immutable even if only one version is archived for some

of these types like criticisms. The need to make criticisms immutable is motivated by the

idea of documenting this kind of the formal communication with customers intact as

justifications for any subsequent changes in the requirements.

Attributes and operations required by any of these types are directly inherited from

Version type; their immediate supertype. This is because the main difference among these

types is the semantic difference in their textual contents.

D. CONCURRENCY CONTROL

One of the main requirements to be satisfied by our system, as was mentioned in

section A.3 of this chapter, is to support teamwork which implies that the DBMS should

support concurrency. Concurrency Control facility is provided by most DBMS to support

data sharing so that multiple concurrent access to the data repository does not lead to an

inconsistent state of the database. Providing concurrency control means that transactions

are serializable: the result must be the same as some serial execution of the same

transactions [60].

152

In our context, we provide some high- level serialization rules specially for analysis

and design steps as was discussed in Chapter HI. Additionally the ECS which our work

extends its scope and capabilities, does provide automatic serialization based on

management policy for design steps that does not permit starting a step before a preceding

one completes. We also rely on the underlying concurrency control facility of the database

engine to provide multiuser concurrent access to shared objects.

The object-oriented paradigm is very natural for modeling concurrent systems [75].

The most common approach object DBMSs use for concurrency control is locking. In its

simplest form, locking an object prevents other transactions from using that object until the

lock is released. The DBMS should also provide the capability to mange locks. Managing

locks includes [60]:

• Granting locks to transactions on particular objects in response to their lock

requests.

• Keeping track of which transactions hold which lock.

• Detecting when lock requests interfere with each other.

• Clearing locks when transactions release them.

Two types are normally used for concurrency in OODBMS [10]:

I Mead locks: Used by a transaction to prevent other transactions from committing a

newer version to the database than the one it is reading until the lock is released.

Several transactions can share a read lock.

l.Write locks: Used by a transaction to prevent other transactions from accessing an

object because it is updating the value of the object. Write locks are exclusive nad

are not shared with other transactions.

In the following subscetions we discuss concurrency control scheme and policies

provided by ONTOS DB; the object-oriented database engine we choose as the underlying

DBMS. The discussion is based on ONTOS DB documents [89], [90].

153

1. Concurrency Control Scheme in ONTOS DB

ONTOS DBMS uses locking technique to implement concurrency control. The

underlying scheme is centered around the idea of a transaction. A transaction is an atomic

unit of change; either all of the changes it contains are saved to the database or non of them

is. This is necessary to keep the database state consistent. For this reason the changes to an

object can only be saved to the database within the scope of the same transaction.

A transaction has access to the client cache of ONTOS DB objects on the

application side and has access to the server cache. Only through the latter an application

can access the objects in the DB either to retrieve (get) or to store (put). The client cache is

the area of application memory where DB objects are stored. Objects brought from the

server cache into the client cache are called "activated" or "in memory".

ONTOS DB employs three concurrency control policies (to be explained shortly).

The choice among them is specified by three parameters given to OC_transactionStart()

free function which starts a transaction. An application also has the freedom not to specify

any relying on the default values. Those parameters determines the following:

• A conflict detection protocol for identifying the conflicts arising from concurrent

attempts to access an object.

• A conflict response protocol for responding to conflicts arising from attempts to

lock an object for reading or writing.

• A buffering protocol for buffering objects on the client side before they are output

to the sever cache

a. Conflict Detection Protocols

ONTOS DB supports two conflict detection protocols

(1) Readers and Writers do not Conflict (NoRWConflict): This Protocol

maximizes overall concurrency across all application accessing the database. It allows

154

processes to obtain ReadLocks (not WriteLock) on objects that have already been

WriteLocked. The reader sees an earlier or later version of the object than the writer

depending on which is serialized first. If a deadlock occurs, a preemtive abort occurs.

(2) Readers and Writers Conflict (RWConflict): Under this protocol the

only concurrent access allowed is to readers on object that already ReadLocked. This is the

default protocol provided by ONTOS DB. Note that writers conflict with writers in either

protocol.

By default objects activated under NoRWConflict have RaedLock and objects

activated under RWConflict protocol have WriteLock. This can be overwriden by

specifying a lock type when activating an object by supplying the lock type as an argument

to ONTOS functions responsible for activating objects (e.g., OCJLookupO).

b. Conflict Response Protocols

The Conflict Response Protocol specifies a function to be called when a conflict

occurs. Two protocols are available:

(1) Wait on Conflicts: waits until the lock is released by the locking

process. This is the default protocol provided by ONTOS

(2) Raise the WaitException: allowing the application to take control after

a conflict to retry the database or do some other work.

c. Buffering Protocols

Buffering protocol determines how frequent objects are transferred from the

client cache buffer to the server buffer during the course of a transaction. Three options are

available:

(1) No Buffering: each put call results in an immediate transfer to the server.

155

(2) Default Buffering: objects are buffered and sent in small groups to the

server. Typically, a transmission is made after ten put operations.

(3) Buffer Until Commit: all objects are transmitted all at once when the

transaction is committed.

2. Concurrency Control Policies

ONTOS DB supports three concurrency control policies. It should be noted that

under anv of the three policies all the objects viewed bv each transaction are from a

consistent state of the database. The three policies differ only on the degree of

concurrency each provides and the consequences based on that provided degree of

generosity in terms of transaction aborts likelihood:

a. Conservative Policy:

This is the default policy provided by ONTOS. It is implemented by the

Readers and Writers Conflict Protocol: RWConflict. Under this policy, a process

attempting to get a ReadLock or a WriteLock on an object WriteLocked by someone else

or attempting to get a WriteLock on an object that already has a ReadLock, can not access

the object and faces one of three fates:

♦ Wait until the object is unlocked.

♦ Abandon its attempt to access the object.

♦ Abort the transaction.

b. Time-based Policy:

This policy is implemented by using No Read Write Conflict Protocol:

NoRWConflict and the default buffering (or no buffering). Under this policy the default

locks on objects is ReadLock.

156

c. Optimistic Policy:

This policy provides the widest overall access to the database and accepts high

risk of abort due to unresolved conflicts. It is implemented, like Time-based policy, by

using the NoRWConflict detection protocol but uses Buffer Until Commit protocol for

buffering.

3. Recommendation

For the design database, we recommend the use of the conservative concurrency

control policy combined with the "wait on conflict" conflict response protocol. For the

buffering we use the default buffering. Default buffering is a compromise between the

other two buffering policies. The problem with the "No Buffering" is that it reduces the

efficiency of transmission from the client (application) to the server. The server and the

client are assumed to lie on different sites of a network as is often the case. The third policy,

"Buffer Until Commit", has a different problem: it lacks timely information. This comes

from the fact that the application can not get any information on lock conflicts until a put

is actually made to the server. Other reasons for our choice are as follows:

1. Within the context of this policy, transactions are the least likely to be aborted due

to unresolved conflicts.

2. The use of "wait on conflict" protocol reduces aborts to a bare minimum.

3. No deadlock is possible due to this policy. Deadlock is expensive to break in the

other two policies. It is broken by preemption that leads to abortion.

4. Writing database schema and application code is easier in the case of this policy.

This is because this policy and the conflict response protocol along with the buffer-

ing protocol we choose, are the defaults of the concurrency parameters of ONTOS

DB. Therefore, the programer does not need to supply any of these parameters to

the ONTOS free functions that require them. These functions use the default values

in this case.

157

5. The other two policies require exact specification of the concurrency parameters

which creates the potentials for unintentional mistakes resulting from the failure of

supplying the proper combination of these parameters. This may lead to following a

concurrency scheme other the one intended.

6. Although the level of concurrency provided by this policy is the least, we rely on

high level serialization for analysis and design activities that makes this problem

less sever compared to abortions of transactions.

7. Since this policy allows concurrent access to readers on objects that already Read-

Locked on any level of concurrency, it still maintains the same concurrency level for

read-only access. This is very suitable for search and view-intensive applications

which conforms with the requirements of the software base in CAPS. Therefore the

use of this policy assists in establishing standardization of the database use over all

contexts supported by the database in CAPS.

158

VII. IMPLEMENTATION MODEL

A. THE DATABASE ENGINE

We have chosen ONTOS DB as a database engine for our design database. ONTOS

is an Object-Oriented multi-user distributed database that includes standard database

functionality as well as a specific support for objects. C++ is the language used to interface

to ONTOS DB and is also used as a Data Definition and Manipulation Language (DFL,

DML).

1. Why ONTOS DB

We have chosen ONTOS because it provides us with [89]:

1. A reliable persistent facility for C++ objects

2. Standard database capabilities and special support for objects.

3. A set of database and object-oriented classes to enhance the power of C++.

4. A set of useful tools for application construction.

Developing application using ONTOS requires writing C++ code to do the

following:

1. Defining the classes that comprise the types of the database schema.

2. Implementing the classes defined in 1.

3. Implementing the overall application using the above classes and possibly the

classes supplied in ONTOS DB.

4. Implementing a suitable user interface.

2. Data Manipulation Language Problem

Despite the fact that C++ is the DDL and DML language supported by ONTOS DB,

many factors discouraged us from using C++ directly or at least at all levels of our

implementation and using Ada instead:

1. Ada is the major implementation language for CAPS where our work is undergoing

159

within its context. Within CAPS, Ada is used for developing prototypes, reusable

components, and the target application.

2. Ada is relatively easier to deal with in terms of the availability of good and stable

compilers and run-time systems.

3. In CAPS a belief was built from actual experiences that debugging of C++ pro-

grams proved to be difficult, specially run-time errors. This increases the required

development effort where speed is required for (rapidly!) designing and developing

prototypes.

4. We have built a good deal of experience in CPAS with User interfaces using TAE

[91] and coded in Ada. This resulted in a large volume of good and reusable frag-

ments of Ada code that can be used partially to implement our user interface.

However ONTOS DB has no Ada binding, and the only language one can use with

ONTOS (either as a DDL, DML, or application development language) is C++. Our

solution to the problem is outlined below and is detailed in the rest of this chapter.

3. Outline of the Solution

The main theme of our solution to the above problem is to keep the C++ code as

minimum as possible for defining and implementing the classes that model the schema

types and to communicate with ONTOS in the low level. Ada does the rest in all other

levels. This effectively means we build an Ada binding ourselves that allows us to use

ONTOS as if it supports Ada. We experimented our approach using a design database mock

up which we designed and developed as a template to be followed not only as part of our

work but on any other similar applications even under different contexts. Refer to

Appendix A for a detailed picture of the basic code comprising this mock up.

This template was made carefully and general enough to provide a complete

methodology that can be used to provide an approximate Ada binding for ONTOS. Our

methodology is explained in detail below.

160

B. AN ADA BINDING FOR ONTOS DB

One vital decision regarding our methodology to build an Ada binding for ONTOS

is the binding boundary. It is clear that the schema definition and implementation must be

developed using C++. This include the definition and implementation of some C++ classes

that represent the schema types along with their attributes, relationships, and operations.

The rest of the required application code uses the schema code along with ONTOS supplied

classes and free functions to do the operations required by the application normally through

a suitably developed user interface. Operations include general database transactions such

as create, store, retrieve, and update objects. Therefore we divided the required code into

three communicating layers where each layer provide services to the layer above. The

lowest layer includes the C++ code defining and implementing the database schema as well

as ONTOS supplied libraries of classes and free functions. The second layer above includes

the code that implements the application logic including the database manipulation. The

third layer above includes the code implementing the user interface. In our approach we

decided to implement the second and third layers in Ada. Since both layers are

implemented in Ada, there was no problem to let both communicate. The real problem was

how the second layer (implemented in Ada) communicate with the first layer (implemented

in C++). The approach we developed is explained below:

1. Motivation

Within CAPS many attempts were made to let Ada and C++ communicate

smoothly. All previous attempts [37], [72] tried to use system calls to inter-communicate

Ada and C++. System calls have the advantages of easiness to understand, implement, and

requires minimal coding. However system calls are probably suitable in situations where

we need to trigger an independent process from the currently running one. Independence

here means that the process runs to completion without the need for inter-communication

with the calling process.

161

Another related problem is that using system calls requires the use of files for

parameters passing which is complex and inefficient. On the other hand, direct parameter

passing between the two languages can result in very persisting kind of run-time errors. The

difficulty comes from the fact that most data structures have different binary

implementation in both languages. In the mean time for data to be passed among C++ and

Ada programs, these data must have exactly the same binary implementation. There are

some solution for the problem, for example by using Ada representation specification. Even

the available solutions are complex, very error-prone, and sometimes do not work.

Given the above facts in addition to the fact that design database systems are highly

active and in which process inter-communication is heavy, our goal was to device a new

technique to achieve the following two objectives simultaneously:

1. The new technique will not use system calls method for realizing inter-communica-

tion between the two languages.

2. The new technique should solve the parameter passing problem.

2. A New Inter-Communication Methodology Between Ada and C++

The methodology we developed achieves the above two goals. It allows programs

in both sides to communicate directly without the need for system calls. It also solves the

parameter passing problem and thus bridges the representation mismatch between the two

languages. The price paid is some extra, may be duplicate, code and potentially increase in

code size.

a. Inter-Communication Controller (ICC)

The key idea of the new technique is to dedicate some code for controlling the

traffic between both languages; let us call it Inter-Communication Controller (ICC). The

sole purpose of the ICC is to facilitate the communication between Ada an C++. Part of the

code implementation of the ICC is a C++ code (to be abbreviated by CICC hereafter), and

162

The next task the analyst does is to acquire and synthesize a set of issues from the

criticisms of the SHs. He does this using also the process history. The history for this task

is approximated by the set of issues from the last demonstration. If one issue can be the

generalization or the specialization of a previous one, this makes the resolution process

much more easier by adapting the artifacts used to resolve it. The new issue may also has

its solution in one of the abandoned alternatives for the old one. The new issue may

contradict the resolution of an old one. These are some of the reasons for recording the

history of the process; design rationale is not lost

The issues synthesized from the refined set of criticisms are:

1. Issuel: The undistinguished coexistence of current and obsolete tracks in the TDB

is not recommended.

2. Issue2: The TDB must not allow the storage of duplicate tracks received from differ-

ent sources (including local sensors).

3. Issue3: The TDB must allow the user to filter the retrieval and display according to

hisfocus.

In this simplified case, it happened that the mapping is one-one between the

criticisms and the issues. This is not the case in general though. One criticism may map to

two or more issues and vice versa, i.e the mapping is many-to-many in the general case.

The analyst reviews the currently synthesized issues, compares them against the

previous ones, and creates an object for each using the system. These objects are then

linked to the step as its output. The analyst also establishes the link manually between the

issues and the criticisms from which they were synthesized. At this point the portion of the

new state of the dependency graph acquired so far is given in Figure 8.8. The design

database stores the same image for this portion too.

191

the other is an approximate mirrored image of the first part but implemented in Ada (to be

abbreviated by AICC hereafter). The structure of the whole application then is as follows:

1. Ada code in one side implementing the major part of the application and the user

interface.

2. C++ code in the other side defining and implementing the schema.

3. The ICC in between.

The following parts can talk directly:

• The AICC and CICC.

• The CICC with the C++ code implementing the schema.

• The AICC with the Ada application programs.

b. Communication Protocol

For the purpose of illustration, assume that from the Ada side we are willing to

change some attribute value call it status to become busy of some person object whose

name attribute is supposed to have the string value "John". The communication between

the system parts adheres to the following protocol at all levels:

1. The user interface is used to invoke the system and enter the required values

("John" and busy in our case).

2. The Ada application programs capture these values and passes it as parameters to

the AICC.

3. The AICC abstracts the context object into a dummy pointer or pointers and passes

it to the CICC along with any identifying information to be used for looking up the

object in the database, in our case it is a pointer to the string "John".

4. The CICC communicates directly with the C++ code passing to it the identifying

piece of information.

5. If the lookup operation is successful, the CICC, points to the object with the dummy

pointer it received from the AICC.

163

6. The CICC sends back the pointer to the AICC.

7. The AICC sends the pointer again to the CICC along with the status new value,

busy.

8. The CICC dereference the pointer to invoke, within the context of the pointed to

object, the C++ class method ChangeStatus(new_status) to perform the required

work.

9. If that required work is to return some value(s) back to Ada, a pointer to the result-

ing value is returned.

lO.If any subsequent operations are to be performed on the same object, only steps 7

through 9 are repeated.

The point behind this excessive back and forth traffic is to avoid derefrencing

C++pointers in the Ada side, especially references to large and complicated data structures

such as C++ objects. If it happens, the derefrencing in this case is the source of many

dangerous errors. Figure 7.1 illustrates the idea of the ICC in between Ada and C++ code.

164

A

ICC MODUL] E

Schema and
DML
(C++)

Application
Programs
(Ada)

t J ü
Query Output

Data
Repository

T

Graphical
User
Interface

<z zd

Figure 7.1 The Role of the Inter-Communication Controller

3. Inter-Communication within the ICC

Since our technique relies on the inter-communication between the two parts of the

ICC (the AICC and the CICC), a basic requirement is to device a methodology that handles

the technical issues for the required communication between them without violating the

main objectives of our technique.The methodology we employ is summarized by the

following three steps and is clarified by a following example drawn from the experiment

template.

1. Compile the C++ code implementing the CICC using a C++ compiler.

2. Use the Unix nm command to get the symbolic names of the subroutines compris-

ing the CICC. Choose the symbolic names which are preceded by 'T".

3. Use the symbolic names obtained in 2 in the "pragmaJnterface" and

165

pragmejnterfacejiame in the corresponding Ada subroutines.

4. Use link_with_pragma to pre-link with the CICC object code in each of the files

containing that code (.o files).

Example: Suppose you have an Ada function called adajiewjksigner and the

object code of the corresponding C++ function called c_new_designer is in the file

personjnteface.o. Now you want to interface the Ada function to the corresponding C++

function:

1. Assuming your C++ code is already compiled and you have the (.o) file(s).

2. Use nm:

>nm -ao personjnteface.o / grep "c_new_designer"
The output will be a punch of names as follows:

person_interface.o:000006c8 T _c_new_designer_FPciT2

person jnterface.o-.00000000 - 00 0000 LSYM c_new_designer_FPciT2:ZtF

personJnterJ-ace.o:000006c8 - 00 001c FUN c_new_designer_FPciT2:F(0,l

Choose the first one (preceded by "T"):

"_c_new_designer__FPciT2" as the symbolic name.

3. In your ada code, all you need is the following:

Function ada_newjLesigner (name : in c_string; level : in integer ; status : in

integer) return designer;

pragma interface(C,c_new_designer); - C++ subroutine name

pragma interface_name(c_new_designer, " c new designer FPciT2 ");

This way you get an Ada function called ada_new_designer so when you say

somewhere in your Ada code:

adajiew_designer (somejiame,somejnteger,anotherjnteger)

you are actually calling the corresponding C++ function:

c_new_designer

166

4. For step #3 you have 3 ways to link with the C++ relevant object files:

• Use withn (not recommended by Ada documentations).

• Supply the C++ (.o) files in the command line as options to a.ld; this is doable and

can be included in a Makefile.

• The way we are using is to use link_with pragma to link to the desired (.o) file;

for example: pragma link_with("person_interface.o") to pre-link with the object

file "personJnterface.o".

C. DEVELOPMENT TEMPLATE

We developed a template as a guide to be followed that contains the code units

required; either C++ or Ada. The structure of each unit and the minimum content is also

specified. Some of these units are required and can be used for the rest of application or

other similar application and may only need some extension to include other functionalities

if the need arises. Some other units are specific to the template case but can be used as

templates on other contexts.

One key point about the code units of the template specially those implementing the

ICC is that they, except for the C++ implementing the schema, are paired between Ada and

C++ in a mirrored image way. Each C++ unit of these has a corresponding Ada unit that

has the same attributes and operations. Figure 7.2 illustrates the mirror units in the design

database mock up which models a database schema definition and implementation as well

as the manipulating application.

167

Person.h
Person.cxx

I
Person_Interface.h
Person Interface.cxx

Person_s.a
Person b.a

Data
Repository

Excption_Interface.h
Excepttionlnterfacexxx

Excption_Interface_s.a
Excption_Interface_b.a

Db_Utility.h
DbUtility.cxx

Db_Utility_s.a
Db_UtUity_b.a

Figure 7.2 Mirrored Units of C++ and Ada

1. Schema Code Units

a. Definition Units:

For each type in the schema there is a code unit representing the definition of

the type. This unit and the one that follows are coded using pure C++ code intermixed with

the use of ONTOS supplied classes and free functions. Notice that the set of operations

given by that unit is the only way to communicate with the unit. Each type unit contains the

following:

• Attributes of the type (termed data members in C++ terminology).

• Relationships between the type and other types (reference to other types).

• Primitive operations (methods; termed member functions in C++ terminology)

defined over the type (mostly operations to set and get attribute values of

objects).

• Operations required by ONTOS especially for persistent objects such as storing

and retrieving objects into and from the database. Note also that the

168

implementation of the primitive operations and relationships normally use

advanced constructs beyond the limit of standard C++ and supplied by ONTOS

such as aggregates, iterators, storage management, etc.

b. Implementation Units:

For each definition unit in 1. there is another unit that represents the

implementation of the definitions given by that unit. These units hides the implementation

detail to achieve the object-oriented concepts of encapsulation and information hiding.

2. Supporting Units

The supporting units implement the CICC which is used (with the AICC) as a

bridge to communicate the Ada code units and the schema code units. These units are coded

like the above ones in pure C++ code intermixed with the use of ONTOS supplied classes

and free functions and include the following type of units:

a. Interface Units:

For each definition or implementation unit there is an interface definition or

implementation unit. Each pair of the interface definition and implementation units

contains only the operations subset of the corresponding definition and implementation

unit pair. This subset is redefined and reimplemented as the definition and implementation

of a set of free functions (not class methods). Each of these free function has an extra

argument which is a pointer to the schema type represented by the class. This extra effort

was made to make it possible for Ada to call C++ class methods indirectly, we did not

succeed to do without this artificial second level provision. Especially we could not get the

symbolic name for the C++ class constructors to be used in the Ada pragmas. Additionally,

C++ operations work on the context object; the object for which the function was called.

For example when a C++ class function (operation) named print_data() is executed,

169

actually there is a hidden (object) argument for this function whose data is to be printed; as

if the function reads: print_data(ObjectX). The caller of this function therefore must call it

within the context of some object using the dot or arrow notation (ObjectX.print_data() if

ObjecX is the object itself or ObjectX= >print_data() if ObjectX is a pointer to the object).

This is easy if the caller is another C++ (or C) fragment of code, but very dangerous and

unsafe if the caller is an Ada fragment of code because of the different representations.

Even the use of the Ada representation clauses is restricted and unsafe specially with big

and complicated data structure like the ones represented by C++ classes. Therefore the only

way to allow Ada to call C++ methods was to make it indirectly through the interface units

using object pointers as an additional argument to these functions. The called function will

then dereference the pointer as the context object and call the corresponding class function.

Further the communication between the Ada code and the interface units is through

pointers only under conditions that these pointers must not be dereferenced in the Ada

side. For example to create or retrieve an object, Ada code calls the appropriate free

function in the interface unit (say createX or lookupX) using a dummy pointer (points to an

empty record) as an additional actual parameter. The free function then dereference the

pointer as the context object and calls the appropriate class member function and returns a

pointer to the object back to Ada. Later, if Ada needs to perform any operation on the

returned object, it calls the appropriate free function passing any required parameter in

addition to the object pointer that it received earlier. This means that the communication is

actually implemented by passing pointers back and forth between Ada code and the

interface units. Since Ada is not allowed to dereference the pointers it receives, it would be

impossible for Ada to call any class function directly unless this function has an additional

parameter for the object it will work on which makes a C++ class something else not related

to C++. This was another reason for using a second level interface units.

170

b. Database Utility Units:

These is a single pair of definition and implementation unit that include a set of

free functions which provide Ada with interface to some relevant Ontos DB operation so

that they are visible to and callable from Ada. These free functions communicate directly

with the ONTOS supplied free functions. With some additional effort these functions can

be eliminated totally and let Ada communicates directly with the ONTOS supplied free

functions which is relatively easier than communicating directly with pure C++ classes.

This can be done by extracting the symbolic names of these functions and using them in the

Ada side. However this requires the examination of the ONTOS object files that define and

implement these free functions.

This pair is general and can be used in similar application and can be extended

in the future in the same way as the need arises to include other database functionalities.

Currently it includes the following set of free functions:

• An interface to ontos DB operation that opens the database OC_open(dbname)

• An interface to ontos DB operation that closes a previously open database

OC_close(dbname)

• An interface to ontos DB operation that starts a transaction OC_transactionStart()

• An interface to ontos DB operation that commits a transaction

OC_transactionStart()

c. Exception Interface Units:

These is a single pair of definition and implementation units that include a set

of free functions used to capture exceptions raised from inside ONTOS DB and map them

to integer indices. These indices are returned (for check) to Ada by a C++ function made

visible and callable from inside Ada (exception_index function). In the Ada side, these

exception are handled properly in a way that does not allow the program to abort and if an

abort is unavoidable, the handler can prompt the user with a meaningful message and

171

possibly a guide as what to do. Depending on what exception has occurred, some actions

are performed. The most noticeable of these actions is the case where the exception was

raised because of a user error (e.g., a misspelled DB name) in the course of opening the DB

operation. In this case the user is prompted to correct and reenter the DB name and the

operation is retried again. The exception interface units are general and can be used in any

similar application even under different context. Some of the codes and their meaning for

the ONTOS captured exceptions to be handled in the Ada side are as follows:

• Normal_code: no exception has occurred.

• Object_already_exists_code: an attempt was made to store object into the DB but

another object is already exists in DB having the same name.

• No_such_object_code: no such object in the DB having that name.

• DB_open_failed_code: an attempt was made to open a DB that does not exist or

using a wrong name (e.g., misspelled).

• DB_not_open_code: an attempt was made to close a DB that was not previously

opened.

• No_active_transaction_code: an attempt was made to commit a transaction that

was not started yet.

• ONTOS_Failure: a catch all that capture any other exception from ONTOS not

covered by the cases above.

3. Ada Images of the C++ Code Units

The Ada code structure comprising the template and the application in general has

two main parts: the first part represents an approximate mirrored image for the C++ code

units in a, b, and c above, and the second part represents the user interface. Each Ada unit

is represented by an Ada package with a specification and a body. The specification part

represents the public interface to the unit. The body includes implementation details which

are not required to be visible outside the unit. In the following we discuss the structure of

the Ada code that belongs mostly to the AICC part.

172

a. The Schema Types Images:

Each of these Ada units has a specification and a body corresponding to the

definition and implementation units of the C++ realization of the type. Each paired

specification and body of these units models an Abstract Data Type (ADT) for each schema

type. The user sees only the visible operations and exceptions of these ADTs and is not

aware of how the communication to the corresponding lower level C++ code is

implemented. These implementation details are hidden in the body unit (package) of each

pair. Each specification contains the same visible operations given by the C++ definition

of the corresponding schema interface unit. Naming convention is followed so that the C++

name of the operation is augmented with the prefix "c_" which is removed from the

corresponding Ada name. Each body mainly contains the pragma portions, an exception

handler, and any additional Ada logic. The pragma portions implement the communication

for each operation to the corresponding C++ one defined and implemented in the schema

interface unit. The pragma portions for each operation include pragma_interface,

pragma_interface_name, and pragma_link_with discussed in section B.3. An example of

the use of these pragmas to interface an Ada function to a corresponding C++ is shown in

Figure 7.3. The exception handler handles any possible captured exception that may be

raised by ONTOS including the catch-all case.

Function ada_c_GetPersonStatus(d : in designer)
return integer/

pragma interface(C,ada_c_GetPersonStatus);

pragma interface_name(ada_c_GetPersonStatus,
"_ada_c_GetPersonStatus FP13Person_ENTITY");

Figure 7.3 Pragma Usage

173

b. The Database Utility Image:

This Ada image includes one specification and one implementation (body) unit

each corresponds to the definition and implementation of the imaged C++ and ONTOS one

and includes the same operations. This utility allow Ada to directly invoke ONTOS DB

general operations to open and close the database, start and commit a transaction, and to

save and delete objects to or from the database.

This pair is general and can be applied to other applications. It can also be

extended in a similar way to include other database functionalities. Similar to the image in

1. above, the body hides the detail of the actual communication implementation and also

includes the same main parts. Fragments of the specification and implementation parts of

this unit is shown in Figure 7.4 and Figure 7.5 respectively. Notice the use of exceptions

in the implementation fragment as will be explained next.

package db_utility_PKG is

-- General ONTOS operations

procedure open_database(ddb : in a_string);

procedure close_database(ddb : in a_string);

procedure transaction_start;

procedure transaction_commit;

procedure save_to_db(d : in designer);

procedure delete_from_db(d : in designer);

end db_utility_PKG;

Figure 7.4 Specification Fragments of the DB Utility Package

174

procedure open_database(ddb : in a_string) is

begin

ada_c_open_dat abase(to_c(ddb));

case get_exception_code is
when nonoal_code =>

null;
when db_open_failed_code =>

raise db_open__failed;
when others =>

raise Ontos_failure;
end case;

end open_database;

Figure 7.5 An Implementation Fragment of the DB Utility Package

c. The Exception Interface Image:

This Ada package specification and body represent a mirrored image for the

corresponding definition and implementation of the C++ exception_interface units. It is

made in a separate package because most of these exceptions apply to all types. Some of

the exceptions can also be renamed to suit a specific type. The syntactic use of these

exceptions is made uniform whereever needed. The defended operation is performed first

and then a check is made for the occurrence of any possible exception including any

unexpected one by checking the occurrence of the catch-all case. If no exception occurs as

a result of performing the operation, the normal path is completed. Otherwise the

corresponding exception is raised and the processing starts at the appropriate exception

handler where the proper action is taken.

175

For example, to perform an operation called find_designer on the schema type

designer that retrieves a designer from the database given his name, the syntax of the

operation (an Ada function in this case) is illustrated in Figure 7.6 below.

begin —findjiesigner
d := ada_c_find_designer(designer_name);
case get_exception_code is

when normal_code =>
null;

when no_such_object_code =>
raise no_such_designer;

when others =>
raise ONTOS_Failure;

end case;
return d ;

end find_designer;

Figure 7.6 The Syntax of Exceptions Usage

Where ada_c_find_designer is the corresponding C++ function and

get_exception_code is the exception interface function that returns the exception code.

If no exception occurred, the value of the designer held by d is returned, otherwise the

exception is raised. In the context of this operation, the only exception that may be raised

is the "no_such_object" one which means that a designer with the given name does not

exist in the database. However to guard against any unexpected exception from ONTOS

side, the catch-all exception "oNTos_Faiiure" is used.

d. Iterators

As part of our template, we have developed an Ada binding for ONTOS

iterators. An iterator is one category of operations that can be applied to an object to visit

all parts ofthat objects [26]. Depending on how much abstraction is exposed to the outside

176

view, iterators are classified into either active or passive. In the active approach, an iterator

is exposed as a set of primitive operations opposed to a single operation in the case of the

passive approach. According to Booch [26], active iterators give great flexibility and can

be easily used in composing reusable software components that build on top of an iterator.

We followed the active approach in implementing iterators to iterate through the structures

of our schema objects. One important class of these structures that normally require the

availability of iterators is the aggregates class embedded in other objects, these include

lists, sets, maps, etc. Ada provides iterator mechanisms for simple types only like arrays

using e.g., a for loop. We developed the iterator template for complex objects using the

basis provided by ONTOS. In our approach, an iterator is considered an object of an

abstract data type that has the following operations:

• CREATE_ITERATOR: creates an iterator of the proper type.

• Has_More_Eiements: returns True if the iterator has visited every item

• Get_Next_Eiement: returns the next item in the iteration.

• RESET_ITERATOR: resets the iterator causing it to start iteration again from the

beginning using either the same object or new one of the same type

• Destroy_iterator: to decollate memory occupied by the iterator

The syntax of using the iterator is shown in Figure 7.7.

Designer_Iter := CREATE_ITERATOR (type_name);

While Has_More_Elements(Designer_Iter) loop

Designer_Object := Get_Next_Element(Designer_Iter);

do something with Designer_Object;

end loop/

Figure 7.7 Iterator Usage

177

D. AN EXTENSION TO THE TEMPLATE

The types of our conceptual model are linked together by complex associations.

Many of these associations are time varying too. They are all binary relations. The majority

are many-to-many and some are one-to-many or many-to-one. One characteristic of the

instances of these associations (at least the ones we are considering) is that they are sets of

objects. Any implementation of our model and the decision support mechanism should

consider an efficient representation and implementation of these relationships. This

consideration should:

1. Provide a container for the set of objects of the association instance.

2. Build instances consistently in both directions of the association (domain and

codomain).

3. Provide a generic representation and implementation for all these association.This

is accomplished by having a single generic enough template that can be used as a

derivation standard for all associations.

The limitation of the ONTOS DB, the implementation database engine, restricts the

realization of the above objectives. Even with the new releases of ONTOS, the generic scale

we are willing to represent can not be provided. Refer to C.2 of ChapterVI for details.

To achieve the above objectives, given ONTOS restrictions, we extended the basic

implementation template we developed in this chapter. This extension is summarized in the

following:

1. The design and development of a binary relation type which we included as one of

the schema types. Objects of this type can capture instances of all binary relations

addressed by our model.

2. The implementation of the binary relation type is made generic enough to be used

by all types with the proper meaningful naming.

3. Macros was used in the implementation of the binary relation type to provide a

generic representation for functionaHty and naming.

178

4. Instances of this type are generated automatically using macros.

5. The binary relation type is inherited by all other types that have such associations.

6. Each inheriting type is provided (using macros) by two instance for each embedded

binary relation. One in the direction from the domain to the codomain and the other

in the opposite direction.

7. Operations provided by an instance of the binary relation type provides all basic

needs of the relation's embedding type in terms of operations to be performed on

the association.

This extension of the basic template has the advantages of consistently establishing

associations, controlling their both directions, reduce coding effort, simplify code design,

and improve maintainability of the code.

Appendix B includes the code for samples of a type implemented using the binary

relation type. It also includes the different levels of macros definitions and instantiations

used. This experiment needs more examination and refinement that we could not do

because of the time and some problems related to the version of ONTOS we are using.

179

180

VIEL CASE STUDY

The case study we are about to deal with is a prototype for a generic Command,

Control, Communication, and Intelligence (C3I) System. This system was developed using

the CAPS design environment [84]. CT system as was developed in CAPS can be

implemented in wide variety platforms in support of a Composite Warfare Commander

(CWC) command and control architecture [68]. The system forms a network of (possibly

LANs of) generic CT stations. Each station is a specialized instance of a common design.

The architecture provides for connectivity between naval platforms, shore-bases, and

external forces. It enables the processing of tactical data from internal and external sources.

The workstation provides the CWC, his subordinate commanders, and coordinators with a

system that supports them in monitoring air, surface, subsurface, and power-projection

(strike) tactical environments.

C3I systems are characterized by an inherent complexity of both requirements and

design. Being a typical of real time embedded systems makes it more complex. It includes

distributed processing, hard real-time constraints, and multiple hardware interfaces [46].

For the case study to be focused given the above characteristics, we will not cover

all aspects of such systems. Instead, we concentrate on a subset of the system requirements

at a given point of time during the design and development process. We then show how

such a requirements subset changes as a result of the criticisms received from stakeholders

in response to the demonstrated behavior of the prototype at the given state. We also show

how stakeholders participate in refining and elaborating requirements supported by the

automated aids based on a formal model. The automated process for propagating the

consequences of the requirements changes down to the design hierarchy is also shown. For

181

the detailed requirements of such a system refer to [68]. For the design and implementation

of the prototype reflecting these requirements refer to [84].

A schematic diagram of a generic C3I station is shown in Figure 8.1. The figure

shows the external systems with which the proposed system communicates. These include

the users, weapon systems, platform sensors, navigation system, and communication links.

"Communication TJihks"

•f
Weapon Systems

1 1 'j 1 1 i| 1 1 < i: ■

t t.....t.....t.
—@ 1 DTS

ll-®-{w?
|—@—| DTS

|—©—| DTS H>—►;

Generic C3I

User

Navig
System

i 1"■"T "1

m m m:
Platform Sensors

DTS: Data Terminal Set
NF: Notch Filters

Figure 8.1 External Interfaces of the Generic C3I System [46]

Following is a brief description of external interfaces [68]:

1. User: could be a CWC, officer in Tactical command, Warfare Area Commander,

Tactical Action Officer, Communication Officer, etc.

2. Communication Links: any digital communication system capable of transmitting

and receiving digital messages.

182

3. Platform Sensors: any locally-mounted device capable of identifying azimuth, ele-

vation, velocity, and/or heading of a contact or track is considered to be a platform

sensor.

4. Navigation System: a system that provides a platform with own positioning, course,

velocity, and time data.

5. Weapons Systems: this interface, if exists, makes the weapons status information

available to the battle manager.

The information flow into and out of the proposed generic C3I station is shown in

the context diagram given as Figure 8.2.

/Weapons
Systems

/ Platform
Sensors

terminal inp

-weapon status ^>

^^»/ G

I Wo

enerk
C3I

rkstat ion /^

^sensor information

^«^ownship navigation
^^^ information

Users

^Xierminal output
/Navigation

System

communications
message

communications
message

Communications
Links

Figure 8.2 The Generic C3I Context Diagram [68]

183

A. THE REQUIREMENTS SET

As we said earlier, we concentrate on only a subset of the system requirements and

the corresponding system design components. This subset includes the requirements

related to the track database (TDB). This database is the reservoir where tracks and their

related information are stored.

1. Current State of the Requirement Components

The current state of the requirements hierarchy structure includes the following

components. The notation Ri.j is used to denote the hierarchical structure of the

requirement components. It means they— child of the requirement component i.

Rl The generic C3I must provide a TDB capable of efficiently storing, accessing,

and updating track information in real time.

Rl. 1 The TDB must provide for storing tracks received through all sources.

Rl.1.1 The TDB must provide for storing tracks received through

communication links.

Rl.1.2 The TDB must provide for storing tracks received through

platform sensors

Rl.1.3 The TDB must provide for storing tracks entered manually by

the user.

second

Rl.1.4 The time for storing a track into the TDB must not exceed 1

Rl .2 The TDB must allow the user to delete tracks.

Rl.3 The TDB must allow the user to change tracks.

R1.4 The TDB must allow the user to retrieve tracks.

R1.4.1 The response time for retrieving a 1000 track information must

not exceed 1 second.

184

These are the requirement components identified so far that relate to the TDB.

Figure 8.3 shows the hierarchy of these components. This hierarchy is represented by

PartOf relationship.

Figure 8.3 Requirements Hierarchy

B. CURRENT STATE OF THE DESIGN

To see where the TDB subsystem is with respect to other major subsystems of the

generic C3I system, Figure 8.4 gives a first level module decomposition ofthat system. The

current state of the design that maps the TDB requirements subset is given by the

corresponding fragments of the PSDL flow diagrams shown in Figure 8.5, Figure 8.6, and

Figure 8.7.

185

Figure 8.4 Module Decomposition of the Generic C3I

commsjrqpk
track

rejpiive_track 1000 ms

sensorjtrack / track DB
manager

\y

out_tracks

deleje^track updat j_track useh^rack

Figure 8.5 The Track DB Manager Module

186

In Figure 8.5 the TDB function is represented by one (composite) PSDL operator.

This operator models a state machine whose state variable is the "track". The figure also

shows the input and output data streams to and from the TDB manager operator. This

operator has a maximum execution time (MET) of 1000 ms. For details about the allocation

of this or any other time constraint either for this operator or any other operator that follows,

refer to [84].

Figure 8.6 provides the first level decomposition of the TDB manager operator. The

decomposition includes PSDL operators for adding, deleting, changing, and retrieving

tracks from the database.

The operator "add the track" is further decomposed as Figure 8.7 shows. This is to

account for the addition of tracks from three different sources: communication links,

platform sensors, and user tracks.

1000 ms

add track

delete track

change_track fthelraä

retnevejrack Ahe traC|

out_
tracks

Figure 8.6 First Level Decomposition of the TDBM

187

1000 ms

user track

commsjrack /_™z,eA \ add track _»(comms] y — ^-
track

sensor track

Figure 8.7 Decomposition of the Operator "add the track"

C. DEMONSTRATION

At the target date, the behavior of the system prototype is demonstrated to the

stakeholders in the presence of the design team members. The stakeholders list includes 5

persons representing different groups of the potential users. The design team is represented

by four persons.

1. Individuals

Individuals from the customer side include a representative for each of the

following stakeholders (SHs). From now on we refer to them as SHI, SH2, SH3, SH4, and

SH5 respectively.

1. Composite Warfare Commander.

2. Strike Warfare Commander.

3. Force Coordinator.

4. Track Controller.

188

5. Communication Officer.

Individuals from the design team include:

1. The manager.

2. An analyst.

3. Two designers.

An object that represents each of these individuals is already in the design database.

The attributes of each such objects is assigned the pertinent values corresponding to each

individual. These values carry the names, organization, roles, expertise, etc. Refer to

section C.3 of Chapter VI for the complete attributes.

2. Criticisms

Using the system, the analyst creates a demonstration step. This step is then linked

to the objects of the present individuals, the current version of the prototype, the set of

criticisms from the last demonstration, and any scenarios set for the demonstration. The set

of criticisms are the primary input to the step. The rest are secondary inputs. The analyst

then starts the demonstration by issuing execute command. In response to the

demonstration, the following criticisms are posed by three SHs:

1. Criticism!.: There is no discrimination in the track database between new and old

tracks.

2. Criticism2: When reporting the same track, track reports received from different

external sources are misleading.

3. Criticism3: The displayed tracks, when requested, must express the focus of the

requester.

The analyst creates an object for each of these criticisms, links it to the person who

raised it. This object is then entered to the design database. The analyst and designers are

then engaged in a conversation with the SHs to elaborate on and analyze these criticisms to

better understand the user requirements. The result of this conversation for the meaning of

189

the first criticism was that with the anticipated high rate of tracks arrival from different

sources, keeping them all in the same database slows down the retrieval process. It also

causes the display of obsolete tracks.

For the second criticism the conclusion is that with the potential of the track sources

being remotely located, the same track reported can enter the database more than once. This

is due to the communication delay. For example assume that a track T is reported at the

same time point by two different sources S1 and S2. S2 is remotely located. The report

message from SI arrives before that of S2 and both are entered into the TDB as two

different tracks.

Exploring the last criticism reveals that the system should allow the user to specify

retrieval and display criteria of the tracks when requested. When the user is interested in

aerial tracks, only aerial tracks are retrieved and displayed. This reduces the number of

tracks retrieved and displayed, and serves the focus of the user. This focus can be distracted

by too many tracks displayed while only a subset of them is currently needed.

The analyst attaches these elaborations to the criticism objects he created. He also

compares the criticism to any related ones from the last demonstration to look for conflict

in interests. He then links these refined and elaborated criticisms to the analysis step as its

output. The detail regarding the transition of the step from the proposed state until it outputs

the refined criticisms and completes remains the same as was explained in Chapter III.

3. Issues

The completion of the demonstration step automatically triggers the creation of

another step: the issue analysis step. The system assigns the issues from the last

demonstration to the newly created step as its primary input and the refined set of criticisms

currently generated as its secondary inputs.

190

The next task the analyst does is to acquire and synthesize a set of issues from the

criticisms of the SHs. He does this using also the process history. The history for this task

is approximated by the set of issues from the last demonstration. If one issue can be the

generalization or the specialization of a previous one, this makes the resolution process

much more easier by adapting the artifacts used to resolve it. The new issue may also has

its solution in one of the abandoned alternatives for the old one. The new issue may

contradict the resolution of an old one. These are some of the reasons for recording the

history of the process; design rationale is not lost.

The issues synthesized from the refined set of criticisms are:

1. Issuel: The undistinguished coexistence of current and obsolete tracks in the TDB

is not recommended.

2. Issue2: The TDB must not allow the storage of duplicate tracks received from differ-

ent sources (including local sensors).

3. Issue3: The TDB must allow the user to filter the retrieval and display according to

his focus.

In this simplified case, it happened that the mapping is one-one between the

criticisms and the issues. This is not the case in general though. One criticism may map to

two or more issues and vice versa, i.e the mapping is many-to-many in the general case.

The analyst reviews the currently synthesized issues, compares them against the

previous ones, and creates an object for each using the system. These objects are then

linked to the step as its output. The analyst also establishes the link manually between the

issues and the criticisms from which they were synthesized. At this point the portion of the

new state of the dependency graph acquired so far is given in Figure 8.8. The design

database stores the same image for this portion too.

191

AAAA

Figure 8.8 Part of the Dependency Graph at the End of the Issue Analysis Step

4. Issues Resolution

Resolution of each of the acquired issues requires: first, deciding on the available

alternatives for the resolution. Second, determining the requirement components in the

existing requirements hierarchy affected by each alternative. Third, Proposing new

requirement components, link them to the requirement hierarchy, and link them to both the

issue and the alternative with the appropriate link. Following that is the formal deliberation

according to the approach we developed in Chapter V. to reach a final decision for

resolving the issue. An automatically generated plan is identified for carrying out the

consequence of the resolution on the affected parts of the system design. For each issue, all

192

the above tasks (except for the last one) are performed within the context of an analysis

substep as we explained in Chapter IE.

In the following subsection we discuss the resolution of each of the three identified

issues. For the second and third issues we only provide the conclusions of the

corresponding resolutions. For the first issue we provide the detail of the whole process

including the formal deliberation to reach a group decision. This is because the process is

the same for all issues. Doing this keeps the discussion focused while provides the means

for illustrating our approach. The formal deliberation process is given in a separate section.

a. The First Issue

The resolution of this issue will be covered in detail in the next section.

b. The Second Issue

The discussion on the second issue isolated the reasons for the problem in the

communication delay for tracks received from remotely located sources. The same problem

can occur if a track is received over a congested communication link or due to any other

network problem even if the sending station is not remotely located. The suggested solution

to this problem was to time stamp this latter tracks. Each track received over a

communication link is stamped with its arrival time at the destination. The stamp carries

the local time of the site. This applies only to the copy of the track to be stored in the site

TDB. The copy of the same track to be relayed to other sites will not be stamped.

This way a chronological order can be established between tracks that have the

same track ID. It is up to the local focus of the site as to decide on storing policy of such

tracks. You should notice that this is related to the first issue. For this reason the resolution

of the first issue should come before the second one. This is part of the analyst job; to

determine the resolution precedence between issues. The analyst in many cases can

determine the interdependencies among issues assisted by the system. This is made

193

possible by using the so far established part of the dependency graph. If the intersection of

the affected sets of requirement components of two issue is not empty, then the resolution

of one issue precedes the other.

The resolution of this issue modifies the requirement components Rl.1.1 which

states that the TDB must provide for storing tracks received through communication links.

The change request (CR) resulting from the resolution is to establish a new requirement

component (as a subcomponent of the latter) stating thaf tracks received through

communication links must be time stamped with the current local time before being stored

into the TDB. Since the requirement component Rl.1.1 is linked in the dependency graph

to the PSDL component implementing the addition of new communication track to the

database, a design change step is automatically generated in the proposed state to carry out

the required design change.

c. The Third Issue

The resolution of the last issue was relatively easier. There was no disagreement

on allowing the user to filter the retrieval and display of requested tracks. Apparently it is

a missing requirement. The resolution of this issue was by modifying two requirement

components: R1.4 where the retrieval functionality comes from, and another component

that states the display requirement. The latter requirement component is not a part of

TDBM requirements hierarchy. The proposed modification is to allow the user, when he

requests a retrieval or display, to filter either according to his focus. The analyst, through a

discussion with the SHs elicited the meaning of focus. According to this elicitation the

following elaboration was reached:

1. The user must be able to filter the retrieval and display by the track type (e.g., sur-

face, ground, aerial).

2. The user must be able to filter the retrieval and display by the track range.

194

3. The user must be able to filter the retrieval and display by the track time.

4. The user must be able to filter the retrieval and display by the track IFF class

(friend, foe, neutral).

The proposed modification in requirements affects two design modules: the

module responsible for retrieving tracks and the one responsible for displaying tracks. The

latter module is outside the TDBM subsystem. It is part of the user interface subsystem. The

resolution was to add an PSDL operator to the user interface subsystem to allow the user to

enter filtering information. This operator (module) validates this information and sends it

to both the retrieval and display operators. This means that within the TDBM only the

retrieve operator is affected.

D. DETAILED STUDY

In this section we provide a detailed elaboration on the resolution of the first issue.

Through this elaboration we demonstrate the establishment of the relationships and

inference, alternative exploration and evaluation, SHs' formal debate to reach a decision,

the final group decision and how it maps to a change request, the exposition of the proposed

change effect on the other parts of the system, and the automatically generated plan to carry

out the design and implementation of the change request.

1. Available Alternatives

The issue concern was the separation in storage between current and obsolete

tracks. The argument about this concern is that the existence of both, without at least being

identified does not serve the focus of the unit. The storage, access, and display of too many

tracks while only a subset is useful degrade performance and distract the decision maker.

The discussion revealed that two alternatives are available to resolve the issue:

195

a. Alternative 1

The first available alternative is to archive obsolete tracks on an external

storage medium. This alternative is supported by the following arguments:

1. The coexistence of both obsolete and current tracks in the TDB slows down the

database access operations.

2. If obsolete tracks are needed, external storage medium can be mounted.

3. Access to obsolete tracks normally occurs under more relaxed situations. Therefore

access speed is not an important factor.

4. It is necessary to remove obsolete tracks from the TDB. Otherwise the TDB eventu-

ally is filled up.

The primary analysis of this option shows that this alternative includes the

addition of the following requirements. We use the notation (Ri.j)^ to mean that Ri.j is one

of the requirement components affected or proposed by the k— alternative.

(R1.5)! Obsolete tracks must be archived on an external storage medium.

(Rl.5.1)! The TDB must allow the user to specify current and/or obsolete

tracks by date and time.

(R1.5.2)1 Obsolete tracks must be periodically downloaded from TDB into

the external storage medium.

(R1.5.2.1)i The TDB must be scanned for obsolete tracks every one

minute.

(R 1.5.2.2)21116 TDB must allow the user to specify a scan frequency

less than one per minute.

The analyst tries to map these requirements into the current design. He

concluded that the following modules have to be changed or newly added:

1. Change the userjnterface (P4) module in the following way:

196

• Add a new submodule (P4.6) that accepts and validates the user input to specify

what current and obsolete tracks are. Notice that this and the following module

are outside the TDBM.

• Change manage_user_interface (P4.1) submodule so that the above functionality

is added to the selection menu.

2. Add a new module, monitor_tracks (P3.5), that has the following two submodules:

• A submodule (P3.5.1) that checks the TDB every minute, removes obsolete tracks

and archives them into the external medium.

• A submodule (P3.5.2) that periodically checks the database to update the status

of tracks (tracks_status) and mark tracks that become obsolete since the last

update.

b. Alternative 2

The second available alternative is to properly identify obsolete and current

tracks in the TDB. Make the default access to current tracks unless otherwise specified by

the user.

This alternative is supported by the following arguments:

1. Obsolete and Current are relative: what is seen as obsolete by some units under

some situation may not be seen so by other units. So both obsolete and current

tracks need to stay in the database.

2. The speed of access to obsolete tracks may sometimes have the same importance as

that of current tracks.

3. Cost of additional hardware.

4. Adding new hardware for archiving increases the system size and weight which is

not suitable for some platforms like airplanes.

The primary analysis of this option shows that this alternative includes the

addition of the following requirements:

197

(R1.5)2The TDB must provide the storage for both obsolete and current tracks, and

allow the user to retrieve either or both with the same efficiency.

(R1.5.1)2The TDB must allow the user specify current and/or obsolete tracks

by date and time.

(R1.5.2)2 Obsolete and current tracks must be identified in the TDB.

In mapping these requirements into the current design the analyst reached to the

conclusion that the following modules have to be changed:

1. Retrieve Tracks (P3.4): must be changed to quantify the retrieval by current, obso-

lete, or both.

2. Display Tracks(P4.7): must be changed for the same reason in 1. Notice that this

module is outside the TDBM.

The analyst also concluded that the following modules have to be added:

1. A module (P4.6) that accepts and validates the user input to specify what current

and obsolete tracks are. Notice that this module is outside the TDBM.

2. A module (P3.5) that periodically checks the database to update the status of tracks

and mark tracks that become obsolete since the last update.

c. Modifying the Dependency Graph

At this point the analyst does the following:

1. Creates two alternative objects, one for each available alternative, and assigns the

value tentative to its status attribute.

2. Links each alternative object to issuel by MayResolve link. The opposite direction

of this relationship (MayResolvedBy) is established automatically.

3. Creates a requirement object for each newly proposed requirement component.

4. Adds each newly created requirement object to the alternative it belongs to.

5. Links the newly created requirement objects in each alternative by the proper

PartOflink.

198

6. Links each newly created requirement object to its proposed parent requirement

object (if any) in the existing requirements hierarchy.

The newly created objects and links are shown in Figure 8.9. Rl is the root of

the TDB requirements hierarchy. Both alternatives have the requirement components set as

shown in the figure.

PartOf .'*

Alternative!

PartOf

% ^PartOf

Altemative2

Figure 8.9 Newly Created Objects and Links

199

d. Analyzing the Impacts on the Design

Before the SHs are engaged in the formal deliberation process to choose among

alternatives, the analyst with the designers analyze the impacts of resolving the issue using

each alternative. For each alternative the analyst does the following:

1. Creates an object (PSDL component) for each proposed module. At this point this

object has few attributes assigned real values. The most noticeable of these is a tex-

tual attribute describing in short the module functionality. Another (Boolean)

attribute is IsUnderAnalysis which is assigned the value True indicating that this

object is not and may not be part of the configuration. See sections C.4 and C.6 of

chapterVI for the representation of these newly proposed components and their

attributes.

2. Establishes the interdependency (if any) between modules affected by each alterna-

tive for both new and existing modules. These dependencies include PartOf and

UsedBy relationships. If not established manually, the latter is computed by the sys-

tem from the former.

3. Places the newly proposed modules in their proper location in the design hierarchy

using PartOf.

4. Links each requirement component in the alternative to the module or modules it

maps to. The link type is UsedBy.

The result of this process is shown in Figure 8.10 for the first alternative. The

impacts of choosing the second alternative can be constructed in a similar way. The figure

illustrates the mapping between the newly identified requirement components in the first

alternative and the existing and/or proposed PSDL modules. As can be seen from the

figure, taking this alternative affects not only the TDB functionality, but also the user

interface. As an example, R1.5 maps to the root module (P4) of the user interface as well

as to monitor_tracks module (P3.5) within TDBM. Rl.5.1 maps to the modules P4.1 (an

200

existing module) and P4.6 (proposed module). The rest of the mapping is shown in the

figure which is expressed using UsedBy links.

Alternative! Requirements Set

P3.1

set_scan_
frequency

archive
tracks

check_
track_
status

O Requirement Component
® PSDL Design Module

UsedBy

PartOf

PartOflUses

Figure 8.10 Requirements-Design Dependencies Related to Alternative 1.

201

e. Inference of New Relationships

Using the manually established relationships discussed above, the decision

support mechanism infers more relationships. Rules introduced in Chapter IV are used

here. From the manual links provided in Figure 8.10, and using the PartOf rule introduced

in Chapter IV , (see page 65.), the mechanism infers the UsedBy relationships shown in

Table 8.21. The PartOf rule has two variants: one applies to the requirements hierarchy and

the other applies to the PSDL hierarchy. Both work in opposite directions. In requirements

hierarchy PartOf and UsedBy relations have opposite direction. In PSDL hierarchy both

have the same direction.

Component Used by

R1.5 Rl.5.1,
Rl.5.2

Rl.5.2 Rl.5.1.1,
Rl.5.1.2

P3 P3.5

P3.5 P3.5.1,
P3.5.2

P4 P4.6, P4.7

Table 8.21. Inferred UsedBy

/. Supporting Information

At this point the available alternatives are determined along with the

requirement components subset in each alternative. This subset is also linked to the affected

PSDL modules; either existing as part of the current design or proposed to implement the

proposed changes in requirements. The analyst supported by the system gathers the

202

following information given in Table 8.22. This information is used to guide the SHs in the

judgement process to be discussed in the following section.

The first alternative has five new requirement components. A total of eight

PSDL modules are affected. Of these 3 are existing and require changes and 5 are newly

proposed and require design and implementation. P3 needs to be changed to reflect the

addition of a new child (P3.5). P4 needs to be changed to reflect the addition of two new

children (P4.6 and P4.7). P4.1 needs to be changed to add a new user interface requirement.

P3.5, P3.5.1, P3.5.2, P4.6, and P4.7 do not exist in the current design; they require design

and implementation. The creation of P3.5 is within the context of the activity that

decomposes P3. The creation of P3.5.1 and P3.5.2 is within the activity that decomposes

P3.5. The same applies to the creation of P4.6 and P4.7 with respect to P4.

Analyzing the effort required to carry out the design and implementation, the

analyst concludes that the first alternative needs 3 designers and the second needs four. This

analysis is based on rough estimates of the required effort. In the first alternative one

designer is needed to create the design of P3.5, decompose it into P3.5.1 and P3.5.2, and

propagate the effect into P3. Another designer is needed to carry out the changes in P4.1

and propagate the effect into P4. A third designer is required to re-decompose P4 to add

P4.6 and P4.7 and implement both. This adds up to a total of three designers. In a similar

way of analysis the second alternative requires 4 designers to carry out the proposed design

effort associated with this alternative.

As part of the analysis here is to determine the availability, field of expertise,

and the expertise levels of the required designers. For altemativel the analyst concluded

that two major expertise areas are needed: database and user interface fields. One designer

is required in the former and two in the latter. With this analysis information the analyst

accesses the designers pool in the design database browsing for available designers with

the required qualification. He found only two available of the required three. The analyst

203

applied the same kind of analysis for alternative2 which led to the results shown in Table

8.22. Four designers are required, but only two are available with the required qualification.

Information
Alternatives

Alternative 1 Alternativ2

No. of affected requirement
components

5 3

No. of New PSDL modules 5 2

No. of Modified PSDL modules 3 4

No. of designers required 3 4

No. of designers available 2 2

Table 8.22. Supporting Information

E. FORMAL DEBATE SUPPORT

The support provided here concerns the SHs debate and the group decision making.

SHs conduct their debate to choose one or more of the available alternative. They use our

version of the IBIS model, Q-IBIS, quantified by the improved AHP. The outcome of the

process is a decision that reflects the combined view points of all SHs. The final decision is

transformed into a change request specifying what requirements to add or change and to

what.

1. Inputs

The mechanism requires a ranking list of the participating SHs and a set of criteria.

The ranking of the list is done as we explained in Chapter V. The set of criteria are used by

the SHs to judge the available alternatives against. The SHs are also provided by the

information gathered in the above section.

The set of criteria of judgement agreed upon are:

204

1. Budget: the relative impact of taking an alternative on the increase in the budget

allocated.

2. Safety: the relative impact of taking an alternative on safety.

3. Deadline: the relative impact of taking an alternative on the delivery deadline of the

system.

The ranking list for the five SHs attending the demonstration is given in Table

8.23. Ranks are given in decreasing order of importance.

Stakeholder Rank

SHI 5

SH2 4

SH3 1

SH4 3

SH5 2

Table 8.23. The ranking List for SHs

2. Problem Structure

The decision problem of choosing among available alternatives by the five SHs is

structured hierarchically into three levels as shown in Figure 8.11. The lowest (level 1)

abstracts the decision question which is the focus of the debate. In our case it is choosing

among the available alternatives. The second level down (level 2) includes criteria of

judgement, in our case they are 3 as we discussed above. The third level includes the

available alternatives for resolving the subject issue. Two alternatives are identified Altl

and Alt2. Since 5 SHs are attending, the system creates 5 instances of this structure. Each

instance is presented to one of the SHs in a user friendly format to express his independent

judgement on the available alternatives.

205

Level 1: Focus Choosing
An Alternative

Level 2: Criteria
Budget Safety Deadline

Level 3: Alternatives (Alternative

Figure 8.11 Hierarchy for Analyzing Alternatives in Phase2

3. Individualjudgements

The system presents each SH by the issue to be resolved, the available alternatives,

and criteria of judgements, all annotated by related information that assists the SH. This

information includes for example the relevant information gathered for each alternative.

The SH reviews this information and can start his own judgement process. To keep the

discussion focused, we only present here the judgement process related to the fourth SH in

the list. The process is the same for the rest of them. The difference is in the outcome of the

process. The complete results related to all SHs are included as appendix D. The rest of the

individual judgement process for SH4 is given by the following steps:

1. SH4 compares each pair of the criteria and assigns a relative weight from the AHP

scale to fill an importance matrix. This importance matrix corresponding to SH4 is

given in Figure 8.12.

206

2. The system performs the AHP calculation on the matrix in 1. whose outcome is a

priority vector. This vector provides a global ranking of all the criteria with respect

to the focus (selecting an alternative(s)). The corresponding priority vector is shown

in the same figure (Figure 8.12). The intermediate computations are not shown in

the figure.

Choose
Alternative B S D

Priority
Vector

B 1 1/3 2 0.27

S 2 1 4 0.62

D 1/3 1/3 1 0.15

Figure 8.12 Pairwise Comparison of Criteria and Priority Vector for SH4

3. SH4 compares the alternatives pairwise with respect to each one of the criteria. This

comparison assigns a relative weight of each alternative over the other with respect

to the criteria under consideration. Since we have three criteria, three importance

matrices are filled in this step, one for each criteria. The three matrices that express

the SH preference are given as part of appendix D.

4. The system performs the AHP calculation on each matrix in 3. to compute a priority

vector of the alternatives with respect to each criterion. Each vector provides a glo-

bal ranking of all the alternatives with respect to the corresponding criterion. The

priority vector computed by the system for each matrix in 3. is included in appendix

D.

5. The composite priority vector of the alternatives with respect to all criteria is com-

puted as follows and is shown in Table 8.26. This vector represents the final judge-

207

ment of one SH (SH4).

• Form the priority matrix L, where L is an ram matrix, n is the number of

alternatives and m is the number of criteria. Each column is indexed by one of the

criteria and each row is indexed by one of the alternatives (see Table 8.26). The

matrix entries are formed from the priority vectors in 4. Each criterion's vector

fills a column in the matrix.

• Multiply this matrix on the right by the vector obtained in 2.

• The result is the required composite priority vector that gives the ranking of all

the alternatives with respect to all the criteria.

• The composite vector is the one used by the decision maker to select one or more

of the alternatives.

These computation steps can be effectively performed by multiplying the priority

of the alternatives under each criterion by the priority of the criterion (the bold face type

entries in the top row of the table) and adding across criteria as shown in Table 8.26.

Budget Safety Deadline Composite
Priorities

(0.27) (0.62) (0.15)

Al 0.37 0.50 0.40 0.47

A2 0.66 0.50 0.60 0.57

Table 8.24. Composite Priority Computation

The composite priorities give SH4 preference of the available alternatives. In our

case the SH prefers the second alternative over the first one when both are evaluated against

the given set of criteria. The preference is not very strong though: 47% for the first

alternative and 57% for the second. When SH4 is done and these automatic computation

outputs the results, the system creates an object of the QI_position and fills its attributes

automatically by the vector of the composite priorities (0.47, 0.57) and the four

208

comparison matrices related to the SH. The system links this object automatically to the

object of the SH and to any argument object this SH may have that justify his judgement.

The QI_position object is also linked to the object of the issue under consideration,

alternatives, and criteria.

This process is repeated for each of the five participating SHs. The complete

comparisons matrices as well as the corresponding priority vectors and the composite

priorities for the five SHs are included as appendix D. The next step is to combine these

individual judgements into group one. This is discussed in the following section.

4. Group judgement

In support of the group final judgement, the system computes a group judgement.

The system uses the already available composite priority vectors along with the priority

vector computed from the ranking list of the SHs. For details concerning how these values

are computed, refer to section D.3 of Chapter V. The results of this computation in our case

are shown in Table 8.25 and Table 8.26. The priorities of the available alternatives as seen

by the combined view points of all the SHs are given by the last column in Table 8.26. Each

SH judgement is expressed by a column in this table. Each such column includes the

importance of the SH (obtained from the ranking list), and the priority vector of the relative

importance of the alternatives as judged by that SH. As can be seen from this table, the

group prefers the second alternative over the first one. Perhaps in part due to the extra

hardware required, the increase in the budget, the more housekeeping needed, the increase

in the size and weight of the resulting system, and the expected delay in accessing obsolete

information that may be needed as current one.

A QG_position object that carries this information is created and linked to the first

issue. Any reasons behind this decision or other textual information goes into the

QG_argument to be created for the whole group.

209

Stakeholder Weight

SHI 0.33

SH2 0.27

SH3 0.07

SH4 0.20

SH5 0.13

Table 8.25. The priority vector of the SHs

SHI SH2 SH3 SH4 SH5 Group
Priority

(0.33) (0.27) (0.07) (0.20) (0.13)

Alternative 1 0.47 0.45 0.52 0.36 0.48 0.46

Alternative 2 0.53 0.55 0.48 0.64 0.42 0.54

Table 8.26. The Combined Priority Matrix and the Group Priority Vector

5. Evolving Requirements and Design

According to the group final selection and their remarks and reasons, the analyst

uses the system to create a change request (CR) object that represents the resolution of the

issue. The CR object lists all impacted requirement components, either existing or newly

proposed ones. For each such components both the old (if applicable) and the new

statements of the component are cited. Since the final group decision has selected the

second alternative, the CR contains requirement changes related to this alternative. In our

case these changes are adding 3 new requirement components. The statements of these

components are the same as was cited in section D. Lb of this chapter. In other cases the

CR may further refine the statements of the affected requirements. If this is the case, the

210

analyst goes back to theses components, reflects any refinements, and modify the

dependencies if necessary.

By finishing this task, the analyst advances the status of the analysis step associated

with issuel to completed. The step output is a modified or newly added set of requirement

components. Accordingly the system automatically generates a sequence of proposed steps

to propagate the changes in the requirements down into the affected design parts. The

system uses the dependencies that tie the affected requirements and the design modules as

well as the inter-dependencies within both the affected requirements and design modules.

Figure 8.13 shows such dependencies for the selected alternative as kept in the design

database and hence accessible by the system. Similar information related to the abandoned

alternative is also kept in the design database as part of the design history.

The generated steps represent a proposed plan to carry out the work required by the

CR. The manager reviews this plan, makes any necessary adjustments, specifies any

management constraints and approves the plan to change the design. Table 8.27 below

shows the automatically generated steps according to dependencies given in Figure 8.13.

There is also another set of induced steps in the design hierarchy to propagate

changes from the lower to the next higher level. This set is not shown in the above table.

These steps are primarily concerned with modifying the parent's specification as a result of

modifying one or more of its children. Also they are concerned with modifying the

implementation of the module whose specification is modified. For details regarding

different types of these induced steps in the PSDL design hierarchy and management

intervention for adjusting the generated plan, refer to [69].

211

Alternative! Requirements Set

PartOfl
UsedBy

manage_ define_
userjnterface obsolete

tracks

display
tracks

retrieve_
tracks

check_
track_
status

O Requirement Component

(§) PSDL Design Module

UsedBy

PartOf

PartOflUses

Figure 8.13 Requirements-Design Dependencies Related to Alternative 2.

212

Step Id
Secondary

Input
Primary

Input

si R1.5 P4

s2 Rl.5.1 P4.6

s3 Rl.5.1 P4.7

s4 R1.5 P3

s5 Rl.5.1 P3.4

s6 R1.5 P3.5

Table 8.27. Automatically Generated Plan

213

214

IX. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

A. CONCLUSION

In this dissertation we have presented a formal model and a decision support

mechanism for requirements analysis and evolution in the environment of computer-aided

prototyping. The formal model and the decision support based on it provide the

representation for requirements as they evolve, tied to the design specification and

implementation. This enables any change in requirements to automatically expose the other

affected parts of the system and automatically generate proposed plans to propagate the

consequences of the requirements change into the system design and implementation.

Propagating the consequences of requirement changes down into the design levels keeps

changes consistent system wide and supports system evolution.

The model provides for representing the customers' responses to the demonstrated

systems, synthesizing issues from these responses, analyzing the affected requirements,

and assisting in identifying alternatives available to resolve open issues. This is done within

the context of analysis and design activities generated automatically. These activities assist

managers control and coordinate the project progress and implement projected plans.

We have also presented a formalism to be used in supporting stakeholders on their

deliberation and judgement of the available alternatives for changing requirements. This

latter support allows for independent judgement of each stakeholder and then combines

these individual judgements into a decision that expresses the group point of view. The

formalism provides a representation and supporting mechanism for capturing and

recording design rationale. This can assist in design replay or justification of decisions as

well as providing an important history trail for management references.

We also have developed a conceptual design for a project database. This database

as reflected by the designed schema is capable of representing, storing and retrieving the

design data and its rationale in a natural way. It also provides the capability of representing

the complex and dynamically varying relationships that tie the system elements.

215

During the course of this research, we also developed a new implementation

technique that allows Ada language to communicate smoothly with both C++ language and

ONTOS DB functionality. This enables Ada programs such as the CAPS system to use a

large part of the ONTOS DB functionality without system calls, process creation overhead,

and file I/O for many complex data types. Within CAPS the new technique increases the

productivity and uniformity of database applications development. This is caused by

minimizing code portions written in C++ and relying on Ada in the rest. Without the new

technique this could not be done. We made the development style of the minimized C++

and the maximized Ada code fixed and of standard format. In addition of increasing

uniformity, this contributes to increased usability of the code fragments. This new

technique has been tested by a database mock-up and was used successfully in developing

the schema and application for the software base in CAPS.

B. SUGGESTIONS FOR FUTURE RESEARCH

One area that warrants further study is the area of quantifying stakeholder

judgements of the available alternatives for resolving open issues. The quantification basis

we provided is drawn from a quantification scale which is less realistic than ideally desired.

What is needed is a more tangible measure of quantification.

Another important extension is to augment our process by a mechanism that checks

consistency in requirements as new requirement components are added or existing ones are

changed.

The above suggestion warrants pursuing again the limitation versus the added

capability of using a deductive database model even with its limited representation for

general knowledge. Using a deductive database model makes the tasks of inference and

consistency checking readily available even with the fine granularity kind of knowledge

which is more difficult to represent and check for consistency using e.g traditional database

consistency constraints.

216

As a continuation of this work, the complete implementation of the model and the

different supporting mechanisms is suggested. It is also worth the effort to complete the

Ada binding for ONTOS DB to include all ONTOS functionality and facilities. The basis

for these tasks have been laid by this dissertation which provides a complete template for

both tasks.

217

218

LIST OF REFERENCES

[I] A. Czuchry, and D. Harries, "KBRA: A NEW Paradigm for Requirements Engineering,"
IEEE Expert, Winter 1988, pp. 21-35.

[2] A. Dardenne, A. Lamsweerde, S. Fickas, "Goal-Directed Requirements Acquisition,"
Science of Computer Programming, 20(1-2): 3-50, 1993.

[3] A. Sage, "Decision Support Systems Engineering," John Wiley & Sons, Inc., 1991.

[4] B. Greenspan, D. Maylopoulos, "Knowledge Representation as Basis for Requirements
Specification," in Reading in AI and Software Engineering, (C. Rich and Richard C.
Waters, Eds.), Morgan Kaufman, 1988.

[5] B. Ramesh, and Luqi, "An Intelligent Assistant for Requirements Validation," Journal of
Systems Integration, Vol. 5, No. 2,1995, pp. 157-177.

[6] B. Ramesh, and Luqi, "Process Knowledge-Based Rapid Prototyping for Requirements
Engineering," Proceeding of the IEEE/ACM Symposium on Requirements Engineering,
San Diego, CA, Jan 1993, pp. 248-225.

[7] B. Ramesh, and V. Dhar "Representing and Maintaining Process Knowledge for Large-
Scale Systems Development," Proc. of the 6th annual Knowledge-Based Software
Engineering Conf., Syracuse, NY, Sep 22-25,1991, pp. 223-231.

[8] B. Ramesh, and V. Dhar "Representing and Maintaining Process Knowledge for Large-
Scale Systems Development," IEEE Expert, April 1994, pp. 54-59.

[9] B. Ramesh, and V. Dhar "Supporting Systems Development by Capturing Deliberations
DuringRequirements Engineering," IEEE Trans, on Software Engineering, Vol. 18, No. 6,
June. 1992 pp. 448-510.

[10] B. Rao, "Object-OrientedDatabases: Technology, Applications, and Products," McGraw-
Hill, Inc, 1994.

[II] B. Shneiderman, "Designing the User Interface" Addison-Wesley Publishing Company,
1992.

[12] C. Date, "Database Systems," Vol I, Fifth ed., Addison-Wesley, 1990.

[13] C. Delobel, and F. Velez, "Introduction to the System," in Building an Object-Oriented
Database System, (F. Bancilhon et. al, Eds.), Morgan Kaufmann Publishers, San Mateo,
California, 1992, pp. 327-342.

[14] ChinJLiang Chang, "Symbolic Logic and Mechanical Theorem Proving," Academic Press,
1973.

219

[15] C. Pot, K. Takahasi, and A. Anton, "Inquiry-Based Requirements Analysis" IEEE
Software, March 1994, pp. 21-32.

[16] C. Rich, C. Waters, "The Programming Apprentice? Addison-Wesley, 1990.

[17] C. Rich, Y. Feldman, "Seven Layers of Knowledge Representation and Reasoning in
Support of Software Development;' IEEE Trans. Software Eng., Vol. 18, No. 6, June 1992,
pp. 451-468.

[18] D. Dampier, "A Formal Method for Semantics-Based Change-Merging of Software
Prototypes," Ph.D. Dissertation, Naval Psotgraduate School, Monterey, CA, Dec 1993.

[19] Doan Nguyen, "An Architectural Model for Software Components Search" Ph.D.
Dissertation, Naval Psotgraduate School, Monterey, CA, Nov. 1995.

[20] D. Lowe, "Co-opertative Structuring of Information: The Representation of Reasoning
and Debate," Int. J. Man-Machine Studies, Vol. 23, Aug. 1985, pp. 97-111.

[21] D. White, "The Knowledge-Based Software Assistant: A Program Summery," 6th annual
Knowledge-Based Software Engineering Conf., Syracuse, NY, Sep 22-25,1991, pp. 2-6.

[22] D. Wood, M. Christel, and S. Stevens, "A Multimedia Approach to Requirements Capture
and Modeling," Proceeding of the ICRE, April 18-22, Colorado Springs, CO, pp. 53-56.

[23] E. Byrne, "IEEE Standards 830: Recommended Practice for Software Requirements
Specifications," Proceeding of the ICRE, April 18-22, 1994, Colorado Springs, CO, pp.
85.

[24] Finkelstein et al, "Inconsistency Handling inMultiperspective Specification" IEEE Trans,
on Software Engineering, Vol. 20, No. 8, Aug. 1994, pp.569-578.

[25] G. Arang, L. Bruneau, and A. Feroldi, "A Tool Shell for Tracking Design Decisions," IEEE
Software, March 1991.

[26] G. Booch, "Software Components with Ada," Benjamin/Cummings, 1987.

[27] G. Golub et al, "Matrix Computations" The Johns Hopkins University Press, Baltimore,
MA, 1983.

[28] G. Moerkotte, and P. Lockemann, "Reactive Consistency Control in Deductive
Databases," ACM Trans. Database Systems, Vol. 16, No. 4, Dec. 1991, pp. 670-702.

[29] G. Strange, "Linear Algebra and its Applications" Harcourt Brace Jovanovich, Inc, 3rd
edition, 1988.

[30] H. Gallaire, J. Minker, and J. Nicolas, "Logic and Database: A Deductive Approach,"
ACM Computing Surveys 16, No. 2, June 1984, pp. 153-185.

220

[31] H. Reubenstein and R. Waters, "The Requirements Apprentice: Automated Assistance for
Requirements Acquisition:' IEEE Trans. Software Eng., Vol. 17, No. 3, March 1991, pp.
226-257.

[32] I. Mostov, "A Model of Software Maintenance for Large Scale Military Systems", Master's
Thesis, Naval Postgraduate School, Monterey, California, June. 1990.

[33] I Mostov, Luqi, and K. Hefner, "A Graph Model of Software Maintenance" Technical
Report, NPS52-90-014, Dept. of Computer Science, Naval Postgraduate School,
Monterey, California, Aug. 1989.

[34] J. Banerjee, et al., "Data Model Issues for Object-Oriented Applications" ACM
Transaction on Office Information Systems, 5(1), 1987.

[35] J. Conklin and M. Begeman, "gIBIS: a hypertext tool for exploratory policy discussion?
ACM Trans. Office Inform. Syst., Vol. 6, Oct. 1988, pp. 303-331.

[36] J. Doyle, "A Truth Maintenance System," Artificial Intelligence, 1997, pp. 231-272.

[37] J. McDowell, "A Reusable Component Retrieval System For Prototyping," Master's thesis,
Dept. of Computer Science, Naval Postgraduate School, Monterey, California, 1991.

[38] J. Karlsson, "Software Requirements Prioritizing," Proceedings of the Second
International conf. on Requirements Engineering, Colorado Springs, Colorado, April 15-
18,1996, pp. 110-116.

[39] J. Linnerooth, "Negotiating Environment Issues: A Role for the Analyst?" in Effective
Decision Support Systems, (J. Hawgood and P. Humphreys, Eds.), The Technical Press,
1987, pp. 33-48.

[40] J. Martins, M. Reinfrank (Eds.), "Truth Maintenance Systems" Spring-Verlag, Berlin,
Germany, 1991.

[41] J. Minker, "On Indefinite Databases and the Closed World Assumption" in Lecture Notes
in Computer Science, No. 138, Spring-Verlag, 1982, pp. 292-308.

[42] J. Mylopoulos et al., "Telos: Representing Knowledge About Information Systems," ACM
Trans, on Information Systems, Vol. 8, No. 4, Oct. 1990, pp. 325-362.

[43] J. Rumbaugh et al, "Object-Oriented Modelling and Design," Prentice-Hall Englewood
Cliffs, N.J., 1991.

[44] K. Takahasi, et al, "Hypermedia Support for Collaboration in Requirements Analysis"
Proceedings of the Second International conf. on Requirements Engineering, Colorado
Springs, Colorado, April 15-18,1996, pp. 31-40.

221

[45] L. Henschen, and H. Park, "Compiling the GCWA in Indefinite Deductive Databases," in
Foundation of Deductive Databases and Logic Programming, (J. Minker, Ed.), Morgan
Kaufmann Publishers, Los Altos, CA, 1988, pp. 395-438.

[46] Luqi, "Computer-Aided Prototyping for a Command-And-Control System using CAPS"
IEEE Software, Jan. 1992, pp. 56-67.

[47] Luqi, "A Graph Model for Software Evolution," IEEE Transaction on Software
Engineering. Vol. 16. No. 8. Aug. 1990.

[48] Luqi, J. Goguen, and V. Berzins, "Formal Support for Software Evolution" Proceeding of
the 1994 Monterey Workshop on Software Evolution, Naval Postgraduate School,
Monterey, CA, Sep. 7-9,1994, pp. 13-21.

[49] Luqi and M. Ketabchi, "A Computer Aided Prototyping System," IEEE Software March
1988, pp. 66-72.

[50] Luqi, R. Steigerwald, G. Hughes, and V. Berzins, "CAPS as a Requirement Engineering
Tool," Proceeding of Requirements Engineering and Analysis Workshop, Software
Engineering Institute, Carneige Mellon University, Pittsburgh, PA, March 12-14, 1991,
pp. 1-8.

[51] Luqi, V. Berzins, and R. Yeh, "A Prototyping Language for Real-Time Software," IEEE
Transactions on Software Engineering, Vol. 14, No. 10, October 1988, pp.1409-1423.

[52] Luqi, V Berzins, "Rapidly Prototyping Real-Time Systems," IEEE software 1988, pp. 25-
36.

[53] Luqi, "Software evolution via rapid prototyping," IEEE computer, vol. 22, pp. 13-25, May
1989.

[54] Luqi, and Winston Royce, "Status Report: Computer-Aided Prototyping," IEEE Software,
Nov. 1991, pp. 77-81.

[55] M. Alford "Attacking Requirements Complexity using a Separation of Concerns,"
Proceeding of the ICRE, April 18-22,1994, Colorado Springs, CO, pp. 2-5.

[56] M. Atkinson, et al, "The Object-Oriented Database System Manifesto," in Building an
Object-Oriented Database System, (F. Bancilhon et al, Eds.), Morgan Kaufmann
Publishers, San Mateo, California, 1992, pp. 3-20.

[57] M. Birdie, and M. Jarke, "On Integrating Logic Programming and Database," in Expert
Database Systems, (L. Kerschberg, Ed.), The Binjamin/Cummings, Menlo Park, CA,
1986,pp.191-207.

[58] M. Davis, "Applied Decision Support," Prentice Hall, 1988.

222

[59] M. S. Feather, "Constructing Specification by Combining Parallel Elaborations," IEEE
Trans, on Software Engineering, Vol. 15, No. 2, Feb. 1989, pp. 198-208.

[60] M. Loomis, "Object Databases: The Essentials," Addison-Wesley, 1995.

[61] M. Lübars, "Representing Design Dependencies in an Issue-Based Style," IEEE Software,
July 1991, pp. 81-89.

[62] P. Bose, "A Model for Decision Maintenance in the Win Win Collaboration Framework,"
Proc. of the 10th annual Knowledge-Based Software Engineering Conf., Boston,
Massachusetts, Nov. 12-15,1995, pp. 105-113.

[63] P. Hsia, A. Davis, and D. Kung "Status Report: Requirements Engineering," IEEE
Software, Nov. 1993, pp. 75-79.

[64] P. Hsia et al "Formal Approach to Scenario Analysis," IEEE Software, March 1994, pp.
33-40.

[65] R. Reiter, "Towards a Logical Reconstruction of Relational Database Theory," in reading
in Artificial Intelligence and Database, (J. Mylopoulos and M Brodie, Eds.), Morgan
Kaufmann, San Mateo, CA, 1989, pp. 301-327.

[66] R. Reiter, "Deductive Question-Answering on Relational Databases," in Logic and
Databases, (H. Gallaire, and J. Minker, Eds.), Plenum Press, New York, 1987, pp. 149-
177.

[67] R. Wen Hong, "User Interface and Database Design for Software Database of the
Computer-Aided Prototyping System (CAPS)," Master Thesis, Computer Science Dept,
Naval Postgraduate School, Monterey, California, March, 1996.

[68] S. Anderson, "Functional Specification for a Generic C3I Station," Master thesis,
Computer Science Dept, Naval Postgraduate School, Monterey, CA, 1990.

[69] S. Badr, "A Model and Algorithms for A Software Evolution Control System," Ph.D.
Dissertation, Computer Science Dept., Naval Postgraduate School, Monterey, CA, 1993.

[70] S. Badr, and Luqi, "A Version and Configuration Model for Software Evolution,"
Proceeding of the Fifth International Conference on Software Engineering and Knowledge
Engineering, June 16-18,1993, San Francisco, CA, pp. 225-227.

[71] S. Badr, and V. Berzins, "A Software Evolution Control Model" Proceeding of the 1994
Monterey Workshop on Software Evolution, Naval Postgraduate School, Monterey, CA,
Sep. 7-9,1994, pp.160-171.

[72] S. Dolgoff, "Automated interface for retrieving reusable software components," Master's
thesis, Naval Postgraduate School, Monterey, California, 1992.

[73] S. Ian "Software Engineering," Fourth edition, Addison-Wesley, 1992.

223

[74] S. Schach " Software Engineering" Second edition, Aksen Associates, Inc., 1993.

[75] S. Sigfried, "Understanding Object-Oriented Software Engineering" IEEE Computer
Society Press, 1996.

[76] T. Rose et al., "A Decision-Based Configuration Process" Software Eng. Journal, Sep.
1991, pp. 332-346.

[77] T. Saaty, and L. Vargas "Prediction, Projection, and Forecasting" Kluwer Academic
Publishers, Norwell, Massachusetts, 1991.

[78] T. Saaty, "Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in
a Complex World," RWS publications, Pittsburgh, PA, 2nd edition, 1990.

[79] T. Saaty, and L. Vargas, "The Logic of Priorities: Application in Business, Energy, Health,
and Transportation," Kluwer-Nighoff Publishing, Hingham, Massachusetts, 1982.

[80] T. Saaty, "The Analytic Hierarchy Process," McGraw-Hill, Inc., 1980.

[81] U. Hahn, M. Jarke, and T. Rose "Team Support in a Knowledge-Based Information
Systems Environment," JEEE Trans. Software Eng., Vol. 17, May 1991, pp. 467-482.

[82] V Berzins, and Luqi "Software Engineering with Abstraction," Addison-Wesley, 1991.

[83] VBerzins, Luqi, and A.Yehudai "Using Transformation in Specification-Based
Prototyping," IEEE Trans, on Software Engineering, Vol. 19, No. 5, May 1993, pp. 436-
452.

[84] V. Coskun, and C. Kesoglu, "A Software Prototype for a Command, Control,
Communication, and Intelligence (C3I) Workstation," Master thesis, Computer Science
Dept., Naval Postgraduate School, Monterey, CA, 1990.

[85] V Rajkovic at el, "Ranking Multiple Options with DECMAK" in Effective Decision
Support Systems, (J. Hawgood and P. Humphreys, Eds.), The Technical Press, 1987, pp.
49-60.

[86] W. Rzepka, J. Sidoran, and D. White, "Requirements Engineering Technologies at Rome
Laboratory" Proceeding of the IEEE/ACM Symposium on Requirements Engineering,
San Diego, CA, Jan 1993, pp. 15-18.

[87] W. Yin, Luqi, and M. Tanik, "Rapid Prototyping for Software Evolution," Technical
Report, NPS52-90-009, Dept. of Computer Science, Naval Postgraduate School,
Monterey, California, Aug. 1989.

[88] Z. Manna, R. Waldinger "The Deductive Foundation of Computer Programming,"
Addison-Wesley, 1993.

[89] "ONTOSDB 3.1 Developer's Guide," ONTOS, Inc., 1995.

224

[90] "ONTOS DB 3.1 Reference Manual, Volume 1: Class," ONTOS, Inc., 1995.

[91] "TAE Plus User Interface Developer's Guide," Version 5.3, Century Computing, Inc., Sep.
1993.

[92] "The Student Edition of MATLAB User's Guide," The Math Works, Inc., 1995.

225

226

APPENDIX A. TEMPLATE CODE

A. C++ Code

-- Unit :class Person (.h)
-- File:person.h
-- Date
-- Author
-- Systems
-- Description

Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)

The header for the Person Class that implements
the designer ADT in C++

#include <Object.h>

class Person : public Object

{
private:

int priv_level; // The designer expertise level
// 0 : low
// 1 : Medium
// 2 : high

int priv_status; // The availability status of a designer

// 0 : free
// 1 : busy

public:

// Constructors
Person(char* name=(char*)0,int level= 0, int status=0);

Person (APL*); // (Ontos required Constructor)

// Ontos required member function)
Type *getDirectType();

// Accessors
int GetPersonLevel() ;

void SetPersonLevel(int level);

int GetPersonStatus();

void SetPersonStatus(int status);

// OSMAN Jul 28, 1995

};

227

Unit
Pile
Date
Author
Systems
Description

class Person implementation (.cxx)
personc.cxx
Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
Provides the implementation (definition) for the Person
Class that implements the designer ADT in C++

#include "person.h"
#include <Directory.h>

//
// constructors

//

Person::Person(APL *theAPL) : Object(theAPL)

{
}

/"

Person::Person(char* name,int level, int status): Object(name)

{
initDirectType((Type *)OC_lookup("Person"));
priv_level = level;
priv_status= status;

}

//
// accessors

//

Type »Person::getDirectType()

{
return (Type*)OC_lookup("Person");

void Person::SetPersonLevel(int level)

{
priv_level = level;

int Person::6etPersonLevel()

{
return priv_level;

228

void Person::SetPersonStatus(int status)

{
priv_status = status;

I*

int Person::GetPersonStatus()

{
return priv_status;

}

/*

/* ==========

-- Unit
-- File
-- Date
-- Author
-- Systems
-- Description

Header for db_utility (.h)
db_utility.h
Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
Provide Function prototypes of some relevant Ontos DB
operation so that they are visible to and callable from
Ada. These operations needs to be extended in the future
in the same way as the need arises.

*/

#include <Database.h>
ttinclude "person.h"
ttinclude "exception_interface.h"

int ada_c_open_database(char* dbname);

void ada_c_close_database(char* dbname);

void ada_c_transaction_start();

void ada_c_transaction_commit();

void ada_c_save_to_db(Person*);

void ada_c_delete_from_db(Person*) ;

Unit The implementation for db_utility (.cxx)

229

File
Date
Author
Systems
Description

db_utility.cxx
Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
Provide the implementation for some relevant Ontos DB
operation so that they are visible to and callable from
Ada. These operations needs to be extended in the future
in the same way as the need arises.

#include "person_interface.h"
#include <Directory.h>
#include <Exception.h>
#include "exception_interface.h"

// Note : We tried to place all EXCEPTION objects in one header file (exception
// _interface.h) and be used whereever needed, but this resulted in an error
// came from the loader saying they are multiply defined, the same eror came
// out when even we placed them global in the same file, so we had to put each
//in the proper function where the Exception is expected.

// ==

// An interface to ontos DB operation OC_open(dbname)

void ada_c_open_database(char* dbname)

{
ExceptionHandler db_open_failed ("DatabaseOpenFailed");

if (db_open_failed.Occurs())
ada_c_set_exception_code(db_open_failed_code);

else

{
ada_c_set_exception_code(normal_code);

if (!(OC_dbIsOpen())) OC_open(dbname);

}
}

// ==

// An interface to ontos DB operation OC_close(dbname)

void ada_c_close_database(char* dbname)

{
ExceptionHandler db_not_open ("DatabaseNotOpen");

if (db_not_open.Occurs())
ada_c_set_exception_code(db_not_open_code);

else

{
ada_c_set_exception_code(normal_code);

OC_close(dbname);

230

}
}

// ===

// An interface to ontos DB operation OC_transactionStart()

void ada_c_transaction_start()

// According to Ontos; No Exceptions are associated with this operation
// Howerver the one added below wil catch any exception raised inside ONTOS

{

ExceptionHandler ontos_falure ("Failure");

if (ontos_falure.Occurs())
ada_c_set_exception_code(ontos_failure_code);

else

{
ada_c_set_exception_code (normal_code);

OC_transactionStart();

}

// An interface to ontos DB operation OC_transactionCommlt()

void ada_c_transaction_commit()

{
ExceptionHandler no_active_transaction ("NoTransaction");

if (no_active_transaction.Occurs())
ada_c_set_exception_code(no_active_transaction_code);

else

{
ada_c_set_exception_code(normal_code);

OC_transactionContmit () ;
}

//

//I Think the following 2 operations should be moved to "person_inteface"
// because both are specific to designer objects and we can not make them
// general to accept any object type

// ==

// An interface to ontos DB operation putObjectO .. specific to an object

231

void ada_c_save_to_db(Person* ada_ptr)

ExoeptionHandler object_already_exists("NamelnUse");
if (object_already_exists.Occurs())

ada_c_set_exception_code(object_already_exists_code);

else

{
ada_c_set_exception_code(normal_code);

ada_ptr->putObject();

//

// An interface to ontos DB operation deleteObject() .. specific to an object

void ada_c_delete_from_db(Person* ada_ptr)

ExoeptionHandler no_such_object ("NameNotPound");

i f (no_such_obj ect.Occurs())
ada_c_set_exception_code(no_such_object_code);

else
{
ada_c_set_exception_code(normal_code);

ada_ptr->deleteObject() ;

}

//

Unit : The header for exception_interface (.h)
Pile: exception_interface.h
Date
Author
Systems
Description

Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
Provides an interface to a set of exception codes defined
below and the protypes for 2 functions that sets and gets
the values of an exception code set by differnt functions
from db_utility and person_interface units indicating
that some exception has occured or not, the meaning of
the exception codes are :

normal_code: no exception has occurred
object_already_exists_code: An attempt was made to store

232

object into the DB but another object is
already exists in DB having the same name

no_such_object_code: No such object in the DB
havining that name

db_open_failed_code: An attempt was made to open
a DB that does not exist or using a wrong
name (eg misspelled)

db_not_open_code: An attempt was made to close
a DB that was not previously opened

no_active_transaction_code: An attempt was made to
commit a transaction that was not started yet

►/

#include <Exception.h>

#define normal_code 0
#define object_already_exists_code 1
#define no_such_object_code 2
#define db_open_failed_code 3
#define db_not_open_code 4
#define no_active_transaction_code 5
#define ontos_failure_code 6

// Note: The following exception objects have been moved from here to the
// proper local places; specifically each to a Punction(s) inside
// person_interface.cxx and db_utility.cxx. The reason for this
// obligatory movement is because the loader complains of being defined
// here and used there and gives me " objects so and so are multuply
// defined". I'm not sure what is wrong because inspite of the error msg.
// the program links and run normally. OSMAN Oct 5, 1995

// ExceptionHandler db_open_failed ("DatabaseOpenPailed");
// ExceptionHandler db_open_failed("DatabaseOpenPailed");
// ExceptionHandler db_not_open("DatabaseNotOpen");
// ExceptionHandler no_active_transaction ("NoTransaction");
// ExceptionHandler object_already_exists ("NamelnUse");
// ExceptionHandler no_such_object ("NameNotFound");

// The following function was introduced to allow ada to capture an exception
// raised inside ONTOS so that Ada can handle it in a way taht will not cause
// the program to abort because of a user error; e.g a misspelled DB name.

int ada_c_get_exception_code();

// The following function is used by different operations from inside
// db_utility and person_interface to set exception code into one of the
// above codes acording to the situation.

void ada_c_set_exception_code(int);

233

-- Unit
-- Pile
-- Date
-- Author
-- Systems
-- Description

The implementation for exception_interface (.cxx)
exception_interface.cxx
Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
Provides the imlementation for the 2 functions set and get
exception_code that sets and gets the values of an

exception code set by differnt functions from db_utility
and person_interface units indicating that some exception
has occured or not, the meaning of the exception codes
are :

normal_code: no exception has occurred
object_already_exists_code: An attempt was made to store

object into the DB but another object is
already exists having the same name

no_such_object_code: No such object in the DB
havining that name

db_open_failed_code: An attempt was made to open
a DB that does not exist or using a wrong
name (eg misspelled)

db_not_open_code: An attempt was made to close
a DB that was not previously opened

no_active_transactlon_code: An attempt was made to
commit a transaction that was not started yet

#include "exception_interface.h"

int global_exception_code = 0 ;

int ada c get exception code()

// The following function was introduced to allow ada to capture an exception
// raised inside ONTOS so that Ada can handle it in a way taht will not cause
// the program to abort because of a user error; e.g a misspelled DB name.

{
return global_exception_code;

}

// The following function is used by different operations from inside
// db_utility and person_interface to set exception code into one of the
// above code acording to the situation.

void ada_c_set_exceptlon_code(int exception_code)

{
global_exception_code = exception_code ;

)

234

/* ==

Unit
File
Date
Author
Systems
Description

#include <Database.h>
Sinclude <Directory.h>
#include "person.h"
Sinclude <Type.h>

Header for person_interface (.h)
person_interface.h
Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
The sole reason for this unit is to allow ADA to Create,
Access, and manipulate objects (instances) of the
"Person Class". We tried to do that directly without that
second level interface, but we did not succeed.
Comments about how ada can communicate with code written
in C++ can be found in some of the Ada files in this Dir.

=== * /

// OSMAN Jul 28, 1995

// The following operation is just for making ada able to call the constructors

// of the Person Class.

Person* ada_c_new_designer(char* Myname , int Mylevel , int Mystatus);

// The following operation is to allow Ada to lookup and retrieve an instance

//of the Person Class

Person* ada_c_find_designer(char*);

// The following Operations each coresponds to a member function of the Person

// Class.

char* ada_c_GetPersonName(Person* ada_ptr);

void ada_c_SetPersonName(char* name, Person* ada_ptr);

int ada_c_GetPersonLevel(Person*) ;

void ada_c_SetPersonLevel(int level. Person*);

int ada_c_GetPersonStatus(Person*);

void ada_c_SetPersonStatus(int status, Person*);

// DESIGNER ITERATOR

// The following operations lumps an iterator suitable for looping through
// instances of the Person class and returning each of these instances
// The following syntax of the Instance Iterator, although is given for

235

// the Person Type, It is general enough to apply to any other TYPE under
// conditltion the Type MUST be classified into the DB (using Ontos CLASSIFY
// utility) with the +X switch so that Ontos will maintain an aggregate of all
// instance of that TYPE, in this case the Type is called "has an EXTENSION"
// .. refer to ONTOS DB Tools and Utilities Guide Ch3.
// WATCH OUT though that using +X swith has a perfomance degredation penality,
// it slows down the application.

Instancelterator* ada_c_Create_Instance_Iterator(char* type_name);

Person* ada_c_Get_Next_Element(Instancelterator* it);

void ada_c_Reset_Iterator(Instancelterator* it, char* type_name);

void ada_c_Destroy_Iterator(Instancelterator* it);

OC_Boolean ada_c_Has_More_Elements(Instancelterator* it);

/* ==========

-- Unit
-- File
-- Date
-- Author
-- Systems
-- Description

The implementation for person_interface (.cxx)
person_interface.cxx
Documented Oct 5,1995.
Osman Ibrahim
Sun C++ and ONTOS (2.1)
The sole reason for this unit is to allow ADA to Create,
Access, and manipulate objects (instances) of the
"Person Class". We tried to do that directly without that
second level interface, but we did not succeed.
Comments about how ada can communicate with code written
in C++ can be found in some of the Ada files in this Dir.

V

#include "person_interface.h"
#include <Exception.h>
#include "exception_interface.h"

// OSMAN Jul 28, 1995
// revised Sep 29, 1995 to incorprate Exceptions

// Note : We tried to place all EXCEPTION objects in one header file (exception
// _interface.h) and be used whereever needed, but this resulted in an error
// came from the loader saying they are multiply defined, the same error came
// out when even we placed them global in the same file, so we had to put each
// in the proper function where the Exception is expected.

//=

// The following operation is just for making ada able to call the constructors

Person* ada_c_new_designer(char* Myname,int Mylevel,int Mystatus)

236

{

ExceptionHandler object_already_exists("NamelnUse");

if (object_already_exists.Occurs())
ada_c_set_exception_code(object_already_exists_code);

else

{
ada_c_set_exception_code(normal_code);

Person* aperson = new Person(Myname, Mylevel, Mystatus);

return aperson;

}
}

Person* ada_c_find_designer(char* person_name)

{

ExceptionHandler no_such_object ("NameNotFound");

if (no_such_object.Occurs())
ada_c_set_exception_code(no_such_object_code);

else
{

ada_c_set_exception_code(normal_code);

Person *aPerson = (Person*)OC_lookup(person_name);

return aPerson;

}

}

char* ada_c_GetPersohName(Person* ada_ptr)

{
ExceptionHandler no_such_object ("NameNotFound");

if (no_such_object.Occurs())
ada_c_set_exception_code(no_such_object_code);

else
{
ada_c_set_exception_code(normal_code);

return ada_ptr->Name();

}
}

237

void ada_c_SetPersonName(char* name. Person* ada_ptr)

{
ExceptionHandler no_such_object ("NameNotPound");

if (no_such_obj ect.Occurs())
ada_c_set_exception_code(no_such_object_code),-

else

{
ada_c_set_exception_code(normal_code);

ada_ptr->Name(name);

}
}

int ada_c_6etPersonLevel(Person* ada_ptr)

{
ExceptionHandler no_such_object ("NameNotPound");

if (no_such_object.Occurs())
ada_c_set_exception_code(no_such_object_code);

{
ada_c_set_exception_code(normal_code);

ada_c_set_exception_code(normal_code);

return ada_ptr->GetPersonLevel();

}
}

void ada_c_SetPersonLevel(int level. Person* ada_ptr)

{
ExceptionHandler no_such_object ("NameNotFound");

if (no_such_object.Occurs())
ada_c_set_exception_code(no_such_object_code);

else

{
ada_c_set_exception_code(nonnal_code);

ada_ptr->SetPersonLevel(level);

}
}

int ada_c_GetPersonStatus(Person* ada_ptr)

238

{
ExceptionHandler no_such_object ("NameNotFound");

if (no_such_obj ect.Occurs())
ada_c_set_exception_code(no_such_object_code);

else

{
ada_c_set_exceptioii_code(noraal_code) ;

return ada_ptr->GetPersonStatus();
}

}

void ada_c_SetPersonStatus(int status. Person* ada_ptr)

{
ExceptionHandler no_such_object ("NameNotFound");

if (no_such_object.Occurs())

ada_c_set_exception_code(no_such_object_code) ;

else

{
ada_c_set_exception_code(normal_code);

ada_ptr->SetPersonStatus(status);

}
}

// DESIGNER ITERATOR

Instancelterator* ada_c_Create_Instance_Iterator(char* type_name)

{
Instancelterator* it = new Instancelterator((Type*) OC_lookup(type_name));

return it;
}

Person* ada_c_Get_Next_Element(Instancelterator* it)

{
Person* next_person = (Person*) (Entity*)it->operator()();
return next_person;

}

void ada_c_Reset_Iterator(Instancelterator* it, char* type_name)

{
it->Reset((Type*) OC_lookup(type_name));

}

239

void ada_c_Destroy_Iterator(InstanceIterator* it)

it->Destroy();

OC Boolean ada_c_Has_More_Elements(Instancelterator* it)

return it->moreData();

}

//

B. Ada Source Code

Component: designer_PKG Spec
Author: Osman Ibrahim
Date: SEP. 1995
Language: Ada
Compiler: caps-suns7 SunAda
Purpose: This package spec represents an Ada mirrored image for the C++

class "Person". It encpsolates all operations and types defined
over designer in a way making an abstract DT of it.It also
defines the interface between Ada operations defined over
designer and the coresponding C++ operations.
Procedure names are given followed by their interface
(C in all cases) and interface names. The a.Id pre-link
link_with pragmas are given in the file link_with_pragmas.a

Refer to this PKG body for some other detail regarding the
Conventions used for subprograms names

The method I used to interface Ada to a C++ code is as follows:

1- compile your C++ code you like to interface Ada to using a
C++ compiler

2- use the Unix nm command to get the symbolic name of the
subroutine you like to link your Ada to using
"pragma_interface" and pragme_interface_name. Choose the
symbolic name which is preceeded by "T". Use the symbolic
name in the pragma interface_name and the C++ subroutine

240

name in the pragma interface.

3- use link_with_pragma to pre-link with the C++ object code
in each of the files containing that code (.o) files. These
link with pragmas are included in the file
link_with_pragmas.a for this experimental application
template

Example: Suppose you have an Ada function called ada_new_designer and
you have a C++ function that implements the Ada function called
c_new_designer and the object code for the C++ function is
in the file person_inteface.o and now you want to interface the
Ada function to the coresponding C++ function :

1- Assuming Your C++ code is already compiled and you have the (.o)
file(s).

2 use nm:
>nm -ao person_inteface.o I grep "c_new_designer"

- The output will be a punch of names as follows:

person_interface.o:000006c8 T _c_new_designer FPciT2
person_interface.o:00000000 - 00 0000 LSYM c_new_designer FPciT2 :ZtF
person_interface.o:000006c8 - 00 001c FUN c_new_designer FPciT2:F(0,l

- Choose the first one (preceeded by "T"):
"_c_new_designer FPciT2" as the symbolic name.

Note : for details about why this symbolic name look this
strange, refer to a paper by Bjarne Stroustrup
titled "Type-safe Linkage for C++"... by the way C++
is one of his contributions.

- Now in your ada code, all you need is the following

Function ada_new_designer(name : in c_string;
level : in integer ;
status : in integer)

return designer;

pragma interface(C,c_new_designer); -- C++ subroutine name
pragma interface_name(c_new_designer, "_c_new_designer FPciT2");

- This way you got an Ada function called ada_new_designer
so when you say somewhere in you Ada code:
ada_new_des igner(some_name,some_integer,another_integer)
you are actually calling the coresponding C++ function:
c_new_des igner

3- Now for step #3 you have 3 ways to link with the C++ relevant
object files :

- use withn (not recommended by Ada documentations)
- supply the C++ (.o) files in the command

line as opetions to a.Id , this is doable and
can be included in the Makefile

241

- The way I'm using is to use link_with pragma to
link to the desired (.o) file

ex: pragma link_with("person_interface.o");

I've included all such pragma link_with in the file
link_with_pragmas.a and then my top level driver (interface)
includes a "with link_with_pragmas_PKG"

with a_strings;
use a_strings;

with exception_interface_PKG;
use exception_interface_PKG;

package designer_PKG is

-- OSMAN 9/29

type designer_record is private;

type designer is access designer_record;

type expertise_level is (low, medium, high); --Expertise level for a designer

type status is (free, busy); -- Designer Availability status

Function new_designer(name
level
s

in a_string;
in expertise_level;
in status) return designer;

Function get_designer(name : in a_string) return designer;

Function GetPersonName(d : in designer) return a_string;

procedure SetPersonName(Name : in a_string;
d : in designer);

Function GetPersonLevel(d : in designer) return expertise_level;

procedure SetPersonLevel(level : in expertise_level;
d : in designer);

Function GetPersonStatus(d : in designer) return status;

procedure SetPersonStatus(s : in status;
d : in designer);

procedure PutDesigner(d : in designer);

242

-- DESIGNER ITERATOR

-- The following operations lumps an iterator suitable for looping through
-- instances of the Person class and returning each of these instances
-- The following syntax of the Instance Iterator, although is given for
-- the Person Type, it is general enough to apply to any other TYPE under
-- conditition the Type MUST be classified into the DB (using Ontos CLASSIFY
-- utility) with the +X switch so that Ontos will maintain an aggregate of all
-- instance of that TYPE, in this case the Type is called "has an EXTENSION"
-- .. refer to ONTOS DB Tools and Utilities Guide Ch3.
-- WATCH OUT though that using +X swith has a perfomance degredation penality,
-- it slows down the application.

-- The syntax of using this iterator is as follows

Designer_Iter := CREATE_ITERATOR (type_name);

While Has_More_Elements(Designer_Iter) loop

Designer_Object := Get_Next_Element(Designer_Iter)

do something with Designer_Object

end loop

You can also issue:

RESET_ITERATOR(Designer_Iter) : to re-iterate

DELETE_ITERATOR(Designer_Iter) : to deallocate memory

Note also that Designer_Iter and Designer_Object are of the same
type: designer of this PKG

Function Create_Instance_Iterator(type_name : in a_string) return designer;

Function Get_Next_Element(d : in designer) return designer;

procedure Reset_Iterator(d : in designer; type_name : in a_string);

procedure Destroy_Iterator(d : in designer);

Function Has_More_Elements(d : in designer) return BOOLEAN;

243

-- EXCEPTIONS

-- The 2 Exceptions "no_such_object" and "object_already_exists" applies to
— all persistent types, that is why they are included in a separate PKG
-- "exception_interface_PKG", so they can be visible to all types.
-- Renaming both here is a matter of readability to know that we are
-- talking about Designer Objects.

no_such_designer : exception renames no_such_object;

designer_already_exists : exception renames object_already_exists;

private
type designer_record is record

null;
end record;

end designer_PKG;

-- Component: designer_PKO Body
-- Author: Osman Ibrahim
-- Date: SEP. 1995
-- Language: Ada
-- Compiler: caps-suns7 SunAda
-- Purpose: This package Body represents an Ada mirrored image for the C++

class "Person". It encpsolates all operations and types defined
over designer in a way making an abstract DT of it.It also
defines the interface between Ada operations defined over
designer and the coresponding C++ operations.
Procedure names are given followed by their interface
(C in all cases) and interface name. The a.Id pre-link
link_with pragmas are also given.

Naming Conventions used for subprograms names are as follows:

1. Subprograms interfacing to coresponding C++ subprograms
have the same name as the the coresponding C++ subprograms
and these names are identified by the prefix "ada_c_"

2. The Ada subprograms implementing the functionality of the
subprograms in 1. and do not include the interface detail
like pragmas and c_strings are given the same name as the
coresponding subprograms in 1. above without the prfix.

Refer to this PKG Spec for some other detail regarding the way
I used to interface Ada to a C++ code.

244

with a_strings;
use a_strings;

with c_strings;
use c_strings;

with db_utility_PKG;
use db_utility_PKG;

with text_io;
use text_io;

with exception_interface_PKG;
use exception_interface_PKG;

package body designer_PKG is

-- OSMAN 9/29

Function ada_c_new_designer(name : in c_string;
level : in integer ;
status : in integer) return designer;

pragma interface(C,ada_c_new_designer);
pragma interface_name(ada_c_new_designer, "_ada_c_new_designer PPciT2");

Function new_designer(name : in a_string;
level : in expertise_level;
s : in status) return designer is

C_name : c_string := to_c(name);
d : designer;

begin

d := ada_c_new_designer(C_name, expertise_level'POS(level),
status'POS(s));

case get_exception_code is
when normal_code =>

null ;
when object_already_exists_code =>

raise designer_already_exists;
when others =>

raise ONTOS_Failure;
end case;

return d;

245

end new_designer;

Function ada_c_find_designer(name : in c_string) return designer;

pragma interface(C,ada_c_find_designer);
pragma interface_name(ada_c_find_designer, "_ada_c_find_designer PPc");

Function get_designer(name : in a_string) return designer is

C_name
d

: c_string
: designer;

= to_c(name);

begin

d : = ada c_find_desj .gner(C_name);

case get_exception_code is
when nonnal_code

null;
when no_such_obj ect_code

raise no_such_designer;
when others

raise ONTOS_Failure;
end case;

return d;

end get_designer;

Function ada_c_GetPersonName(d : in designer) return c_string;

pragma interface(C,ada_c_GetPersonName);
pragma interface_name(ada_c_GetPersonName,

"_ada_c_GetPersonName FP6Person");

Function GetPersonName(d : in designer) return a_string is

a_name : a_string := to_a(ada_c_GetPersonName(d));

begin

case get_exception_code is
when nonnal_code =>

null;
when no_such_object_code =>

246

raise no_such_designer;
when others =>

raise ONTOS_Failure;
end case;

return a_name;

end GetPersonName;

procedure ada_c_SetPersonName(
Name : in c_string;
d : in designer);

pragma interface(C,ada_c_SetPersonName);
pragma interface_name(ada_c_SetPersonName,

" ada c SetPersonName FPcP6Person");

procedure SetPersonName(Name : in a_string;
d : in designer) is

C_name : c_string := to_c(Name);

begin

ada_c_SetPersonName(C_name, d);

case get_exception_code is
when normal_code =>

null;
when no_such_object_code =>

raise no_such_designer;
when others =>

raise ONTOS_Pailure;
end case;

end SetPersonName;

Function ada_c_GetPersonLevel(d : in designer) return integer;

pragma interface(C,ada_c_GetPersonLevel);
pragma interface_name(ada_c_GetPersonLevel,

" ada c_GetPersonLevel FP6Person");

Function GetPersonLevel(d : in designer) return expertise_level is

level_code : integer;

247

level : expertise_level;

begin

level_code := ada_c_GetPersonLevel(d);

case level_code is
when expertise_level'POS(low) =>

level := low;

when expertlse_level'POS(medium) =>
level := medium;

when expertise_level"POS(high) =>
level := high;

when others =>
null;

— Is this last line OK ???
-- i.e will not cause any problems; i.e is it safe??
-- I thought of constraining level_code to be of
-- 0 .. 2 range; but this may cause problems in the
-- C++ side.. I'm not sure,

end case;

case get_exception_code is
when normal_code =>

null;
when no_such_object_code =>

raise no_such_designer;
when others =>

raise ONTOS_Failure;
end case;

return level;

end GetPersonLevel;

procedure ada_c_SetPersonLevel(
level : in integer;
d : in designer);

pragma interface(C,ada_c_SetPersonLevel);
pragma interface_name(ada_c_SetPersonLevel,

"_ada_c_SetPersonLevel PiP6Person");

procedure SetPersonLevel(level : in expertise_level;
d : in designer) is

248

begin
case level is

when low =>
ada_c_SetPersonLevel(expertise_level'POS(low) , d);

when medium =>
ada_c_SetPersonLevel(expertise_level'POS(medium) , d) ;

when high =>
ada_c_SetPersonLevel(expertise_level'POS(high) , d) ;

end case;

case get_exception_code is
when normal_code =>

null;
when no_such_object_code =>

raise no_such_designer;

when others =>
raise ONTOS_Failure;

end case;

end SetPersonLevel;

Function ada_c_GetPersonStatus(d : in designer) return integer;

pragma interface(C,ada_c_6etPersonStatus);
pragma interface_name(ada_c_GetPersonStatus,

"_ada_c_GetPersonStatus FP6Person");

Function GetPersonStatus(d : in designer) return status is

status_code : integer;
s : status;

begin

status_code := ada_c_GetPersonStatus(d);

case status_code is
when status'POS(free) =>

s := free;

when status'POS(busy) =>
s := busy;

when others =>
null;

-- Is this last line OK ???

249

-- i.e will not cause any problems; i.e is it safe??
— I thought of constraining level_code to be of
-- 0 .. 2 range; but this may cause problems in the
— C++ side.. I'm not sure.

end case;

case get_exception_code is
when normal_code

null;
when no_such_object_code

raise no_such_designer;
when others

raise ONTOS_Failure;
end case;

return s;

end GetPersonStatus;

procedure ada_c_SetPersonStatus(
Status : in integer;
d : in designer);

pragma interface(C,ada_c_SetPersonStatus);
pragma interface_name(ada_c_SetPersonStatus,

" ada c SetPersonStatus PiP6Person");

procedure SetPersonStatus(s : in status;
d : in designer) is

begin

case s is
when free =>

ada_c_SetPersonStatus(status"POS(free), d);

when busy =>
ada_c_SetPersonStatus(status'POS(busy), d);

end case;

case get_exception_code is
when normal_code =>

null;
when no_such_object_code =>

raise no_such_designer;
when others =>

raise ONTOS_Pailure;
end case;

250

end SetPersonStatus;

procedure PutDesigner(d : in designer) is

-- The following 2 instantiations are for outputing
-- expertise_level and status values respectively

package level_enum_io is new ENDMERATION_IO(expertise_level);
use level_enum_io;

package status_enum_io is new ENÜMERATION_IO(status);
use status_enum_io;

begin

transaction_start;

PUT("Person Name is ");
PUT(GetPersonName(d).s);
NEW_LINE;

PUT("Person Level is ");
PUT(GetPersonLevel(d));
NEW_LINE;

PUT("Person Status is ");
PUT(GetPersonStatus(d));
NEW_LINE;

transaction_commit;

end PutDesigner;

-- DESIGNER ITERATOR

Function ada_c_Create_Instance_Iterator(type_name : in c_string)
return designer;

pragma interface(C,ada_c_Create_Instance_Iterator);
pragma interface_name(ada_c_Create_Instance_Iterator,

"_ada_c_Create_Instance_Iterator PPc");

Function Create_Instance_Iterator(type_name : in a_string)
return designer is
begin
return ada_c_Create_Instance_Iterator(to_c(type_name));

251

end Create_Instance_Iterator;

Function ada_c_Get_Next_Element(d : in designer) return designer;

pragma interface(C,ada_c_Get_Next_Element);
pragma interface_name(ada_c_Get_Next_Element,

"_ada_c_6et_Next_Element PP16InstanceIterator");

Function Get_Next_Element(d : in designer) return designer is

begin
return ada_c_Get_Next_Element(d);

end Get_Next_E lenient;

procedure ada_c_Reset_Iterator(d : in designer; type_name : in c_string);

pragma interface(C,ada_c_Reset_Iterator);
pragma interface_name(ada_c_Reset_Iterator,

" ada c Reset Iterator FP16InstanceIteratorPc");

procedure Reset_Iterator(d : in designer; type_name : in a_string) is

begin
ada_c_Reset_Iterator(d, to_c(type_name));

end Reset_Iterator;

procedure ada_c_Destroy_Iterator(d : in designer);

pragma interface(C, ada_c_Destroy_Iterator);
pragma interface_name(ada_c_Destroy_Iterator,

"_ada_c_Destroy_Iterator FP16InstanceIterator");

procedure Destroy_Iterator(d : in designer) is

begin

252

ada_c_Destroy_Iterator(d);

end Destroy_Iterator;

Function ada_c_Has_More_Elements(d : in designer) return BOOLEAN;

pragma interface(C,ada_c_Has_More_Elements);
pragma interface_name(ada_c_Has_More_Elements,

"_ada_c_Has_More_Elements FPieinstancelterator");

Function Has_More_Elements(d : in designer) return BOOLEAN is

begin

return ada_c_Has_More_Elements(d);

end Has_More_Elements;

end designer_PKG;

-- Component: db_utility_PKG Spec
-- Author: Osman Ibrahim
-- Date: SEP. 1995
-- Language: Ada
-- Compiler: caps-suns7 SunAda
-- Purpose: This package spec represents an Ada mirrored image for some of

Ontos Free functions that access and manipulate objects and
other DB operations. These operations needs to be extended in
the future in the same way as the need arises.

with a_strings;
use a_strings;

with designerJPKG;
use designer_PKG;

package db_utility_PKG is

-- General ONTOS operations

253

procedure open_database(ddb : in a_string);

procedure close_database(ddb : in a_string);

procedure transaction_start;

procedure transaction_commit;

procedure save_to_db(d : in designer);

procedure delete_from_db(d : in designer);

end db_utility_PKG;

Component: db_utility_PKG Spec
Author: Osman Ibrahim
Date: SEP. 1995
Language: Ada
Compiler: caps-suns7 SunAda
Purpose: This package body represents an Ada mirrored image for some of

Ontos Free functions that access and manipulate objects and
other DB operations. These operations needs to be extended in

the future in the same way as the need arises.
Procedure names are given followed by their interface
(C in all cases) and interface name.

Refer to the designer_PKG body for some other detail regarding
the Conventions used for subprograms names

Refer to the designer PKG Spec for some other detail regarding
the way I used to interface Ada to a C++ code.

Refer to the file exception_interface.h for the meaning of each
exceptiuons used here.

with a_strings;
use a_strings;

with c_strings;
use c_strings;

with exception_interface_PKG;
use exception_interface_PKG;

with designer_PKG; -- needed for type "designer" to be visible here which I do
— not think it is right, it is needed because some functions

254

— have "designer" as an input parameter..refer to the note
-- below,

use designer_PKG;

package body db_utility_PKG is

procedure ada_c_open_database(ddb : in c_string) ;

pragma interface(C,ada_c_open_database) ;
pragma interface_name(ada_c_open_database, "_ada_c_open_database PPc");

procedure open_database(ddb : in a_string) is

begin

ada_c_open_database(to_c(ddb));

case get_exception_code is
when normal_code =>

null;
when db_open_failed_code =>

raise db_open_failed;
when others =>

raise Ontos_fallure;
end case;

end open_database;

procedure ada_c_close_database(ddb : in c_string);

pragma interface(C,ada_c_close_database);
pragma interface_name(ada_c_close_database, "_ada_c_close_database PPc");

procedure close_database(ddb : in a_string) is

begin

ada_c_close_database(to_c(ddb));

case get_exception_code is
when normal_code =

null;
when db_not_open_code =

raise db_not_open;
when others =

255

raise Ontos_fallure;

end case;

end close_database;

procedure ada_c_transaction_start;

pragma interface(C,ada_c_transaction_start);

pragma interface_name(ada_c_transaction_start,

" ada c transaction start Fv");

procedure transaction_start is

begin

ada_c_transaction_start;

case get_exception_code is

when normal_code

null;

when others

raise Ontos_failure;

end case;

end transaction_start;

procedure ada_c_transaction_commit;

pragma interface(C,ada_c_transaction_commit);

pragma interface_name(ada_c_transaction_coinmit,

"_ada_c_transaction_commit Fv") ,

procedure transaction_commit is

begin

ada_c_transaction_commit;

case get_exception_code is

when normal_code =>

null;

when no_active_transaction_code =>

raise no_active_transaction;

when others =>

raise Ontos_fallure;

end case;

256

end transaction_commit;

I think the following 2 operations should be moved to the designer ADT and
renamed "save_designer to_db" and "delete_designer_from_db" respectively
because they depend on the type of object passed and we can not make the
input type generic ... can we?????

procedure ada_c_save_to_db(d : in designer);

pragma interface(C,ada_c_save_to_db);
pragma interface_name(ada_c_save_to_db, "_ada_c_save_to_db_FP6Person");

procedure save_to_db(d : in designer) is

begin

ada_c_save_to_db(d);

case get_exception_code is

when normal_code =>
null;

when object_already_exists_code =>
raise object_already_exists;

when others =>
raise Ontos_failure;

end case;

end save_to_db;

procedure ada_c_delete_from_db(d : in designer);

pragma interface(C,ada_c_delete_from_db);
pragma interface_name(ada_c_delete_from_db,

" ada c delete_from_db FP6Person");

procedure delete_from_db(d : in designer) is

begin

ada_c_delete_from_db(d);

257

case get_exception_code is

when normal_code
null;

when no_such_object_code
raise no_such_object;

when others
raise Ontos_failure;

end case;

end delete_from_db;

end db_utility_PKG;

Component: exception_interface_PKG Spec
Author: Osman Ibrahim
Date: SEP. 1995
Language: Ada
Compiler: caps-suns7 SunAda
Purpose: This package spec represents an Ada mirrored image for the

coresponding C++ unit "exception_interface". It is made in a
separate PKG because most of these exceptions apply to all
types. In the future it will be easy to use those exceptions
as is or renamed to suit a specific type.

One function from the coresponding C++ unit "exception_
interface" is missing intentionally here which is :
"set_exception_code()" because it is not needed to be visible
in the Ada side.

Refer to the unit "exception_interface.h" for the meaning
of each of the exceptions defined here.

package exception_interface_PKG is

EXCEPTIONS

Ontos_failure

db_open_failed

: exception;

: exception;

258

db_not_open

no_actlve_transaction

no_such_object

object_already_exists

: exception;

: exception;

: exception;

: exception;

Exception codes captured and returned to ada from ONTOS
Refer to the comment in the PKG body.

type exception_code is (normal_code,
obj ect_already_exi at s_code,
no_such_object_code,
db_open_failed_code,
db_not_open_code,
no_act ive_transact ion_code,
Ontos_failure_code);

Function get_exception_code return exception_code;

end exception_interface_PKG;

Component: exception_interface_PKG body
Author: Osman Ibrahim
Date: SEP. 1995
Language: Ada
Compiler: caps-suns7 SunAda
Purpose: This package body represents an Ada mirrored image for the

coresponding C++ unit "exception_interface". It is made in a
separate PKG because most of these exceptions apply to all
types. In the future it will be easy to use those exceptions
as is or renamed to suit a specific type.

One function from the coresponding C++ unit "exception_
interface" is missing intentionally here which is :
"set_exception_code()" because it is not needed to be visible
in the Ada side.

Refer to the unit "exceptlon_interface.h" for the meaning
of each of the exceptions defined here.

259

with text_io;
use text_io;

package body exception_interface_PKG is

-- This function was introduced to allow ada to capture an exception raised
-- inside ONTOS so that Ada can handle it in a way taht will not cause
-- the program to abort because of a user error; e.g a misspelled DB name.

Function ada_c_get_exception_code return integer;

pragma interface(C,ada_c_get_exception_code);
pragma interface_name(ada_c_get_exception_code,

"_ada_c_get_exception_code_Fv");

Function get_exception_code return exception_code is

begin

case ada_c_get_exception_code is

when exception_code'POS(normal_code)
return normal_code;

when exception_code■POS(no_such_object_code)
return no_such_object_code;

when exception_code'POS(object_already_exists_code)
return object_already_exists_code;

when exception_code'POS(db_open_failed_code)
return db_open_failed_code;

when exception_code'POS(db_not_open_code)
return object_already_exists_code;

when exception_code■POS(no_active_transaction_code)
return no_active_transaction_code;

when others
return Ontos_failure_code;

end case;

end get_exception_code;

260

end exception_interface_PKG;

Component: link_with_pragmas_PKG

Author: Osman Ibrahim
Date: AUG. 1995
Language: Ada
Compiler: caps-suns7 SunAda
Purpose: This package the pragma link_with for the a.Id pre-link to the

the relevant C++ components given by thier object files.
It also contains pragma link_with for the a.Id pre-link to the
procedure cplusplus_init which is required at TAE level to make
TAE, Ada, C++, and ONTOS behave friendlt together !!!!!!

For linking with a C++ (generally foreign lang.) object file,
there are 3 ways to do that :

- use withn (not recommended by Ada documentations)

- supply the C++ (.o) files in the command
line as opetions to a.Id , this is doable and
can be included in the Makefile

- The way I'm using is to use link_with pragma to
link to the desired (.o) file

Refer to the files designer_s.a and designer_b.a for other
relevant details of how interfacing Ada to C++

package link_with_pragmas_PKG is

-- OSMAN 7/24
-- CAPS C++ operation to initialize static constructors

procedure cplusplus_init;
pragma interface(C,cplusplus_init);
pragma interface_name(cplusplus_init, "_main");

Main C++ interface object module, required for initialization of C++
static constructors.

pragma link_with("C++_initialize.o") ,-

pragma link_with("person.o");

261

pragma link_with("person_interface.o");

pragma 1ink_wi th("db_ut11i ty.o");

pragma link_with("exception_interface.o");

end link_with_pragmas_PKG;
-- OSMAN

Unit
Purpose
Date
Author
Compiler
Description

des igner_ops.a
Interface experiment
Jul 26, 95 and modified Oct 95
Osman Ibrahim
SunAda
This module has originally appeared in ECS under the same
name (designer_ops.a) and was coded completely in C++
I translated it into Ada to examine the possibilty of
directly using C++ classes from inside ADA and thus
testing the new approach. It should be noted that without
the new approach of interfacing Ada to C++, this module
could not be coded in Ada
This Ada module provide the same functionality that is
currently provided by the coresponding C++ module for
the designer pool in the ECS.
I did not try to change any logic or implementation here
to test the new approach.

Notice that some of the code here is redundant and is not
needed especialy the checks to see if the designer already
exists in the DB (or the parallel check to see if the
designer does not exists in the DB) before performing some
operations. The lower level operations defined in the
designer and db_utility packages guards aginst the
occurences of such conditions by raising the proper
exception.

with link_with_pragmas_PKG;
use link_with_pragmas_PKG;

with designer_PKG;
use designer_PKG;

with db_utility_PKG;
use db_utility_PKG;

262

with exception_interface_PKG;
use exception_interface_PKG;

with c_strings;
use c_strings;

with a_strings;
use a_strings;

with u_env;
use u_env;

with text_io;
use text_io;

package Designer_Ops_PKG is

package int_io is new lnteger_io(integer);
use int_io;

procedure create^_designer (name : in a_string; level :in expertise_level);

procedure write_designers_to_file;

procedure add_designer (name : in a_string; level :in expertise_level);

procedure delete_designer (name : in a_string);

procedure change_exp_level (name : in a_string; level :in expertise_level);

procedure change_status(name : in a_string);

procedure show_designer(name : in a_string);

procedure show_all_designers;

end Designer_Ops_PKG;

package body Designer_Ops_PKG is

-- This procedure iterates through the designer instances (using the new
-- iterator) and write designer info into a file called:
-- "/.caps/temp/ddbdisplay" to be used later by TAE to display this info
-- in the designer panel. Notice the use of the new ITERATOR here.

263

procedure write_designers_to_file is

local_designer : designer;
designer_iterator : designer;

user_directory: a_string :=
copy(c_strings.to_a(u_env.getenv(c_strings.to_c("HOME"))) &
a_strings.to_a("/.caps/temp/ddbdisplay")) ;

ECS_output : file_type;
ECS_output_file_name : a_strings.a_string := user_directory;
begin

transaction_start;

open(ECS_output, MODE => OUT_FILE, NAME => ECS_output_file_name.s);

designer_iterator := Create_Instance_Iterator(to_a("Person"));

while (Has_More_Elements(designer_iterator)) loop

local_designer := Get_Next_Element(designer_iterator);

put(ECS_output,GetPersonName(local_designer).s);
SET_COL(ECS_output,25);
if GetPersonLevel(local_designer) = low then

put(ECS_output, "Low");
elsif GetPersonLevel(local_designer) = medium then

put(ECS_output, "Med");
else

put(ECS_output, "High");
end if;

SET_COL(ECS_output,45);
if GetPersonStatus(local_designer) = free then

put(ECS_output, "Free");
else

put(ECS_output, "Busy");
end if;

NEW_LINE(ECS_output);
end loop;
close(ECS_output);
transaction_commit;

end write_designers_to_file;

procedure create_designer (name : in a_string;
level :in expertise_level) is

local_designer : designer;

begin

264

local_designer := new_designer(name, level, free);

end create_designer;

Add designer to the DB
Note that when adding a new designer to the DB his status is free by default
that is the reason we do not need status as a parameter.

procedure add_designer (name : in a_string;
level :in expertise_level) is

local_designer : designer;

begin

transaction_start;
local_designer := get_designer(name) ,-
if local_designer /= null then

PUT_LINE("Designer already exists in the DB");
null;

else
local_designer:= new_deslgner(name, level, free);
save_to_db(local_designer);

end if ;
transacti on_c ommi t;

end add_designer;

procedure de1ete_designer (name : in a_string) is

local_designer : designer;

begin

transactlon_start;
local_designer := get_designer(name);
if local_designer = null then

PUT_LINE("Designer does not exist in the DB");
null;
else

delete_from_db(local_designer);
end if ;
transacti on_c ommi t;

end delete_designer;

procedure change_exp_level (name : in a_string;

265

level: in expertise_level) is

local_designer : designer;

begin

transaction_start;
local_designer := get_designer(name);
if local_designer = null then

PUT_LINE("Designer Does not exist in the DB");
null;

else
SetPersonLevel(level, local_designer);
save_to_db(local_designer);

end if ;
transaction_commit;

end change_exp_level;

procedure change_status(name : in a_string) is

local_designer : designer;

begin
transaction_start;
local_designer := get_designer(name);
if local_designer = null then

PUT_LINE("Designer does not exist in the DB");
null;

else
if GetPersonStatus(local_designer) = free then

SetPersonStatus(busy, local_designer);
else

SetPersonStatus(free, local_designer);
end if ;
save_to_db(1ocal_designer);

end if ;
transact!on_commit;

end change_status;

procedure show_designer(name: in a_string) is

local_designer : designer;

begin
transaction_start;
local_designer := get_designer(name);
if local_designer = null then

PDT_LINE("Designer does not exist in the DB");
null;

266

else
PutDesigner(local_designer);

end if ;
transaction_commit;

end show_designer;

procedure show_all_designers is

local_designer : designer;
designer_iterator : designer;

begin

transaction_start;
designer_iterator := Create_Instance_Iterator(to_a("Person"))

while (Has_More_Elements(designer_iterator)) loop
local_designer := Get_Next_Element(designer_iterator);

if local_designer = null then
PUT_LINE("Designer does not exist in the DB");

null;
else

PutDesigner(local_designer);
end if ;

end loop;
transaction_commit;

end show_all_designers;

end Designer_Ops_PKG;

CAPS (Version 3) Edit Designer Team Operations Interface

Date: Aug 1995

Author: Osman Ibrahim
Comp i1er: SunAda

This interface provides access to ECS designer pool modification
procedures.

This code was generated using TAE 5.3 and modified to integrate the
CAPS tools. The code was adapted from jlm original code so that it
can be tested in isolation away from other ECS components. But it provides

267

-- the same original functionality. Among other changes is incorprating of some
-- (triveal) exception handlers to test the working of capturing and handling
-- exceptions raised inside ONTOS. These exception handler should be elaborated
-- and enhanced in a way that makes excution resumes in the correct path (if
-- recoverable) through a user friendly interface using TAE like showing a pnnel
-- where the error will be explained and allow the user to correct it in that
-- panel (if possible) and then resume the excution.

-- Modifications:Oct 1995

with tae; use tae;
with X_Windows;
with text_io; use text_io;
with a_strings; use a_strings;
with c_strings; use c_strings;
with u_env; use u_env;
with system; use system;

--with ecs_operations; --use ecs_operations;
with CAPS_additional_TAE; use CAPS_additional_TAE;
with link_with_pragmas_PKG; use link_with_pragmas_PKG;
with Designer_Ops_PKG; use Designer_Ops_PKG;
with designer_PKG; use designer_PKG;
with CAPS_alert_package; use CAPS_alert_package;
with db_utility_PKG; use db_utility_PKG;
with exception_interface_PKG;
use exception_interface_PKG;

procedure test_edit_team is

package edit_team_support is

package taefloat_io is new text_io.float_io (taefloat);
package taeint_io is new text_io.integer_io(taeint);
package int_lo is new text_io.integer_io(integer); use int_io;
procedure initializePanels (file : in string); -- NOTE: params changed
procedure sort_designer_file;

-- BEGIN EVENT_HANDLERs
procedure editteam_name (info : in tae_wpt.event_context_ptr);
procedure editteam_ex_opt (info : in tae_wpt,event_context_ptr);
procedure editteam_d_cancel (info : in tae_wpt.event_context_ptr);
procedure editteam_designers (info : in tae_wpt.event_context_ptr);
procedure editteam_selection_3 (info : in tae_wpt.event_context_ptr);
procedure confirm_yes (info : in tae_wpt.event_context_ptr);
procedure confirm_no (info : in tae_wpt.event_context_ptr);
-- END EVENT_HANDLERs

end edit_team_support;

268

use edit_team_support;

use tae.tae_misc;

theDisplay : XJWindows.Display;

user_ptr : tae_wpt.event_context_ptr;

editteam_info : tae_wpt-event_context_ptr;

confirm_info : tae_wpt-event_context_ptr;

etype : wpt_eventtype;

wptEvent : tae_wpt.wpt_eventptr;

dummy : boolean; — used to clear out the wpt event queue

tlme_to_exit : exception;

MAX DESIGNERS integer := 2 0;

de s i gne r_inf o

3tring(1..64));

designer

expertise_level

designer_status

s_vector(1..MAX_DESIGNERS) (others => new

: a_string := null;

: string(1. . 24);
: string(1. . 24);

-- changed from c_string to a_string

expertise_level_code : designer_PKG.expertise_level low;

data_file
f ile_name

length
counter

text_io.file_type;
a_string := null;
integer-
integer;

null_string :

temp_string :

test_string :

time_string :

c_time_string :

de s i gne r_as s i gned:

priority :

string(1..64) := (others => ascii.nul);

stringd. .64) := null_string;

string(1..64);

string(1..14);

c_string := null;

boolean := false;

integer;

step_set_cardinality : integer := 0;

open_prototype_file : file_type;

open_prototype_file_name : a_string := null;

user
user_home_dir_name

user_home

ddb_name

caps_home

a_string := null;

a_string := null;

a_string := null;
a_st ring := to_a("hoda_db");

-- changed from c_string to a_string

a_string := null;

package body edit_team_support is

269

procedure initializePanels (file : in string) is

use tae.tae_co;
use tae.tae_misc;

tmp_info : tae_wpt.event_context_ptr;
dummy : BOOLEAN;

begin

-- do one Co_New and Co_ReadPile per resource file
tmp_info := new tae_wpt.event_context;
Co_New (0, tmp_info.collection);
-- could pass P_ABORT if you prefer
Co_ReadPile (tmp_info.collection, file, P_C0NT);

— pair of Co_Pinds for each panel in this resource file

editteam_info : = new tae_wpt.event_context;
editteam_lnfo.collection := tmp_info.collection;
Co_Find (editteam_info.collection, "editteam_v", editteam_info.view);
Co_Pind (editteam_info.collection, "editteam_t", editteam_info.target);

confirm_info := new tae_wpt.event_context;
confirm_info.collection := tmp_info.collection;
Co_Pind (confirm_info.collection, "confirm_v", confirm_info.view);
Co_Find (confirm_info.collection, "confirm_t", confirm_info.target);

— Since there can now be MULTIPLE INITIAL PANELS defined from
— within the TAB WorkBench, call Wpt_NewPanel for each panel
— defined to be an initial panel (but not usually all the panels
-- which appear in the resource file).

if editteam_info.panel_id = NÜLL_PANEL_ID then
tae_wpt.Wpt_NewPanel (theDisplay, editteam_info.target,

editteam_info.view,
X_Windows.Null_Window, editteam_info, tae_wpt.WPT_PREFERRED,
editteam_info.panel_id);

else
tae_wpt.Wpt_SetPanelState (

editteam_info.panel_id, tae_wpt.WPT_PREFERRED);

end if;

-- osman

-- Get user name and home directory.

user := c_strings.to_a(u_env.getenv(c_strings.to_c("USER")));
user_home := c_strings.to_a(u_env.getenv(c_strings.to_c("HOME")));

— read the designer pool and put it in the panel
write_designers_to_file; -- get designers from DDB and put in

-- "$.caps/temp/ddbdlsplay"

270

— read in the designers from the transfer file (ddbdisplay)
-- into the editteam panel

sort_designer_file;
text_io.open(data_file, text_io.IN_PILE,user_home.s&"/.caps/temp/ddbdis-

play");
counter := 1;
while not end_of_file(data_file) loop

get_line(data_file,designer_info(counter).all,length);
if length > 64 then

put_line(" length > 64");
end if;
TAE_Wpt.Wpt_SetStringConstraints(editteam_info.panel_id,

"designers", Taelnt(counter), designer_info);

counter := counter + 1;

end loop;

text_io.CLOSE(data_file);

for i in counter..M&XJ3E SIGNERS loop
designer_info(i).all :=
|| " ;

TAE_Wpt.Wpt_SetStringConstraints(editteam_info.panel_id,
"designers", Taelnt(counter), designer_info);

end loop;
-- osman

dummy := Tae_Wpt.Wpt_Pending;

end initializePanels;

procedure sort_designer_file is

MAX_DESI6NERS : integer := 500;
null_string : stringd-. 64) := (others =>'■); — Using ' ' rather than

ascii.nul because when
-- the TAE application reads

this file,it stops
-- reading when it sees null

characters.
designer_array : array(1..MAX_DESIGNERS) of stringd..64) := (others =>

null_string);
designer_file : file_type;
counter : integer := 1;
length : integer := 0;
designer : stringd.. 64) := null_string;
temp_string : stringd..64) := null_string;
inserted : boolean := false;

begin

open(designer_file,in_file,user_home.s&"/.caps/temp/ddbdisplay");

271

while not end_of_file(designer_file) loop
designer := null_string;
get_line(designer_file,designer,length);
inserted := false;
for j in l..counter-l loop -- check all previously inserted designers

if designer < designer_array(j) then — if we found the insertion point
for k in reverse j+1..counter loop

if (k>l) then
designer_array(k) := designer_array(k-l); end if; — move all

"greater than"
-- designers up 1

end loop;
designer_array(j) := designer; -- insert this designer
inserted := true;
exit; — exit for j loop

end if;
end loop;
if not inserted then designer_array(counter) := designer; end if;

— add designer to end of array because it
— is lexicographically greater than the others

counter := counter + 1;
end loop;
delete(designer_file);

create(designer_file,out_file,user_home.s&"/.caps/temp/ddbdisplay");
for i in l..counter-l loop
put_line(designer_file,trim(to_a(designer_array(i))) .s) ;

end loop;
close(designer_file);

end sort_designer_file;

-BEGIN EVENT HANDLERS

procedure editteam_name (info : in tae_wpt.event_context_ptr) is
value : array (1..1) of string (1..tae_taeconf.STRINGSIZE);
count : taeint;

begin
tae_vm.Vm_Extract_Count (info.parm_ptr, count);
if count <= 0 then null;
else tae_vm.Vm_Extract_SVAL (info.parm_ptr, 1, value(l));
end if;
designer_assigned := true;
designer := trim(to_a(value(1)));
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"expertise",

") ;
expertise_level_code := low; -- reset default to low
expertise_level(l..3) := "low";
TaeJWpt.Wpt_SetString(editteam_info.panel_id,"status",

") ;

272

designer_status(1..4) := "

end editteam_name;

procedure editteam_ex_opt (info : in tae_wpt.event_context_ptr) is
value : array (1..1) of string (1..tae_taeconf.STRINGSIZE);
count : taeint;

begin
tae_vm.Vm_Extract_Count (info.parm_ptr/ count);
if count <= 0 then null;
else tae_vm.Vm_Extract_SVAL (info.parm_ptr, 1, value(l));
end if;
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"expertise",value(1));
expertise_level(l..24) := value(1)(1..24);

end editteam_ex_opt;

procedure editteam_d_cancel (info : in tae_wpt.event_context_ptr) is
value : array (1..1) of string (1..tae_taeconf.STRINGSIZE);

count : taeint;

begin
tae_vm.'Vm_Extract_Count (info.parm_ptr, count);
if count <= 0 then null;
else tae_vm.Vm_Extract_SVAL (info.parnt._ptr, 1, value(l));
end if;
if info.panel_id = NÜLL_PÄNEL_ID then

tae_wpt.Wpt_NewPanel (theDisplay, info.target, info.view,
X_Wlndows.Null_Window, info, tae_wpt.WPT_PREFERRED,
info.panel_id);

else
tae_wpt.Wpt_SetPanelState (

info.panel_id, tae_wpt.WPT_PREPERRED);
end if;

designer_assigned := false;
designer := null;
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"name",

");
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"expertise",

") ;
expertise_level_code := low; -- reset default to low
Tae_Wpt.Wpt_SetString(editteam_info.panel_id, "status" ,

") ;
designer_status(l..4) := "

end editteam_d_cancel;

procedure editteam_designers (info : in tae_wpt,event_context_ptr) is
value : array (1..1) of string (1..tae_taeconf.STRINGSIZE);
count : taeint;

begin
tae_vm.Vm_Extract_Count (info.parm_ptr, count);
if count <= 0 then null;

273

else tae_vm.Vm_Extract_SVAL (info.parm_ptr, 1, value(1));

end if;
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"name",

value(l)(1..24));
designer_assigned := true;
designer := trim(to_a(value(1)(1..24)));
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"expertise",

value(l)(25..30));
expertise_level(1..6) := value(l)(25..30);
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"status",

valued) (44..51));
designer_status(1..4) := value(l)(44..47);

end editteam_designers;

procedure editteam_selection_3 (info : in tae_wpt.event_oontext_ptr) is
value : array (1..1) of string (1..tae_taeconf.STRINGSIZE);
count : taeint;

begin

tae_vm.Vm_Extract_Count (info.parm_ptr, count);
if count <= 0 then null;
else tae_vm.Vm_Extract_SVAL (info.parm_ptr, 1, value(l));
end if;
if (FALSE) then null;
elsif s_equal (value(l), "add designer") then

-- add designer to ddb

if not designer_assigned then designer := null;
caps_alert(to_a("ERROR: No designer selected."));

write_designers_to_flie;

else

expertise_level_code := low; — default to low expertise level
if expertise_level(l..3) = "low" or expertise_level(1..3) = "Low"

then expertise_level_code := low;

end if;
if expertise_level(l..3) = "med" or expertise_level(1..3) = "Med"

then expertise_level_code := medium;

end if;
if expertise_level(l..2) = "hi" or expertise_level(1..3) = "Hi"

then expertise_level_code := high;

end if;

-- add designer and write new designer list to $HOME/ddbdisplay

add_designer(designer, expertise_level_code) ,-

end if;

caps_alert(to_a("Designer addition complete."));

274

— now reaä the new transfer file and update the TAE item and

write_designers_to_file; — osman new
sort_designer_file;
text_io.open(data_file, text_io.IN_PILE,user_home.s&"/.caps/temp/ddb-

display");
counter := 1;

while not end_of_file(data_file) loop
get_line(data_file,designer_info(counter).all,length);
TAEJWpt .Wpt_SetStringConstraints(editteam_info.panel_id,

"designers", Taelnt(counter), designer_info);

counter := counter + 1;
end loop;

text_io.CLOSE(data_file);

for i in counter..MAX_DESI6NERS loop
designer_info(i).all :=
■■ " ;

TAEJWpt.Wpt_SetStringConstraints(editteam_info.panel_id,
"designers", Taelnt(counter), designer_info);

end loop;

elsif s_egual (value(l), "delete designer") then
if confinn_info.panel_id = NtJLL_PANEL_ID then

tae_wpt.Wpt_NewPanel (theDisplay, confirm_info.target,
confirm_info.view,

X_Hindows.Null_Window, confirm_info, tae_wpt.WPT_PREFERRED,
confirm_info.panel_id);

else
tae_wpt.Wpt_SetPanelState (

confirm_info.panel_id, tae_wpt.WPT_PREPERRED);

end if;

elsif s_egual (value(l), "change expertise level") then

-- update designer info in ddb

begin

if not designer_assigned then designer := null;
caps_alert(to_a("ERROR: No designer selected."));
write_designers_to_file;

else

if expertise_level(l..3) = "low" or expertise_level(1..3) = "Low"
then expertise_level_code := low; end if;

if expertise_level(l..3) = "med" or expertise_level(1..3) = "Med"
then expertise_level_code := medium; end if;

if expertise_level(l..3) = "hig" or expertise_level(1..3) = "Hig"
then expertise_level_code := high; end if;

change_exp_level(designer,expertise_level_code);

275

display");

write_designers_to_file; -- osman new

end if;

caps_alert(to_a("Designer expertise modification complete."));

-- now read the new transfer file and update the TAE item

sort_designer_file;
text_io.open(data_file, text_io.IN_PILE,user_home.s&"/.caps/temp/ddb-

counter := 1;

while not end_of_file(data_file) loop

get_line(data_file,designer_info(counter).all,length);
TAE_Wpt.Wpt_SetStringConstraints(editteam_info.panel_id,

"designers", Taelnt(counter), designer_info);
counter := counter + 1;

end loop;

text_io.CLOSE(data_file);

for i in counter..MAX_DESIGNERS loop

designer_info(i).all :=
"

TAE_Wpt.Wpt_SetStringConstraints(editteam_info.panel_id,
"designers", Taelnt(counter), designer_info);

end loop;

end;

elsif s_equal (value(l), "return to main CAPS menu") then

tae_wpt.Wpt_PanelReset(editteam_info.panel_id);

if not (editteam_info.panel_id = NULL_PANEL_ID) then
tae_wpt.Wpt_PanelErase(info.panel_id); end if;

raise time_to_exit;

end if;

end editteam_selection_3;

procedure confirm_yes (info : in tae_wpt.event_context_ptr) is
value : array (1..1) of string (1..tae_taeconf.STRINGSIZE);
count : taeint;

begin
tae_vm.Vm_Extract_Count (info.parm_ptr, count);
if count <= 0 then null;

276

else tae_vm.Vm_Extract_SVAL (info.parm_ptr, 1, value(1));

end if;

-- remove designer from ddb

if not designer_assigned then designer := null;
caps_alert(to_a("ERROR: No designer selected."));
write_des igners_to_file;

else
delete_designer (designer) ,-

write_designers_to_file; -- osman new

if designer_status(l..4) = "Busy" then
caps_alert(to_a

("NOTICE: The designer just deleted was busy, RESCHEDULING his/her tasks."));

end if;

end if;

tae_wpt.Wpt_PanelErase(info.panel_id);
tae_wpt.Wpt_PanelReset(editteam_info.panel_id);
—caps_alert(to_a("Designer deletion complete."));

TAE_TERMIO.T_BELL ;
TAE_WPT.WPT_MessageNoBlock(editteam_info.panel_id,

"Designer deletion complete.");

-- clear the TAE panel items

Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"name",
" ");

designer := null;
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"expertise",

") ;
expertise_level_code := low;
Tae_Wpt.Wpt_SetString(editteam_info.panel_id,"status",

");

-- read the new designer list from the transfer file

s ort_de s i gner_f ile;
text_io.open(data_file, text_io.IN_PILE,user_home.sS:"/.caps/temp/ddbdis-

play");
counter := 1;

while not end_of_file(data_file) loop

get_line(data_file,designer_info(counter).all,length);
TAE_Wpt.Wpt_SetStringConstralnts(editteam_info.panel_id,

"designers", Taelnt(counter), designer_info);
counter := counter + 1;

277

end loop;

text_io.CLOSE(data_flie);

for i in counter..MAX_DESIGNERS loop

designer_lnfo(i).all :=
ii

TAE_Wpt.Wpt_SetStringConstraints(editteam_info.panel_id,
"designers", Taelnt(counter), designer_info);

end loop;

end confirm yes;

procedure confirm_no (info : in tae_wpt.event_context_ptr) is

begin

caps_alert(to_a("Cancelling designer deletion."));

--do nothing
tae_wpt.Wpt_PanelErase(info.panel_id);

end confirm_no;

--END EVENTJHANDLERs

end edit_team_support;

-- Main Program

begin

--tae_wpt.Wpt_Init ("",theDisplay);

-- Note that we are using the specially designed Wpt_CCInlt procedure. This
-- is so that we, rather that TAE, initialize all C++ static constructors.

cplusplus_init; -- initialize C++ static constructors for ONTOS and TAE
f_force_lower (FALSE); -- permit upper/lowercase file names
CAPS_additional_TAE.Wpt_CCInit("",theDisplay);
tae_wpt.Wpt_NewEvent (wptEvent);
caps_home := c_strings.to_a(u_env.getenv(c_strings.to_c("CAPSHOME"))),-
open_database(ddb_name); -- the coresponding C++ function is coded in a

transaction_commit; -- for testing the exception no_active transaction

initializePanels ("osman_edit_team.res"); — single call

278

main event loop

EVENT_LOOP:
loop

tae_wpt.Wpt_NextEvent (wptEvent, etype); — get next event

— NOTE: This case statement includes STUBs for non-WPT_PARM_EVENT events.

case etype is

when wpt_eventtype'first .. -1 => null;
-- iterate loop on Wpt_NextEvent error

-- TYPICAL CASE: Panel Event (WPT_PARM_EVENT)

when tae_wpt.WPT_PARM_EVENT =>
-- You can comment out the following "put" call.
-- The appropriate EVENTJHANDLER finishes the message.
-- text_io.put ("Event: WPT_PARM_EVENT, ");

Panel event has occurred.
Get parm name and then call appropriate EVENT_HANDLER.

CAUTION:
DO NOT call Wpt_Extract_Parm_xEvent from any other branch
of this "case" statement or you'll get "storage_error".

tae_wpt.Wpt_Extract_Context (wptEvent, user_ptr);
tae_wpt.Wpt_Extract_Parm (wptEvent, user_ptr.parm_name);
tae_wpt.Wpt_Extract_Data (wptEvent, user_ptr.datavm_ptr);
tae_vm.Vm_Find (user_ptr.datavm_ptr, user_ptr.parm_name/

user_ptr.parm__ptr);

-- dummy if to ease code generation
if (FALSE) then null;

-- WPT_PARM_EVENT, BEGIN panel editteam

elsif tae_wpt."=" (user_ptr, editteam_info) then
if (FALSE) then null; — another dummy if

-- determine appropriate EVENT_BANDLER for this item
elsif s_egual ("name", user_ptr.parm_name) then

editteam_name (user_ptr);
elsif s_equal ("ex_opt", user_ptr.parm_name) then

editteam_ex_opt (user_ptr);
elsif s_egual ("d_cancel", user_ptr.parm_name) then

editteam_d_cancel (user_ptr);
elsif s_egual ("designers", user_ptr.parm_name) then

editteam_designers (user_ptr);
elsif s_equal ("selection_3", user_ptr.parm_name) then

editteam_selection_3 (user_ptr);
end if; -- END panel editteam

-- WPT_PARM_EVENT, BEGIN panel confirm

279

elsif tae_wpt."=" (user_ptr, confirm_info) then
if (FALSE) then null; -- another dummy if

-- determine appropriate EVENT_HANDLER for this item
elsif s_equal ("yes", user_ptr.parm_name) then

confirm_yes (user_ptr);
elsif s_egual ("no", user_ptr.parm_name) then

confirm_no (user_ptr);
end if; — END panel confirm

else
text_io.put_line ("unexpected event from wpt!");
exit; -- or raise an exception, but compiler warns if no

exit
end if;

when tae_wpt.WPT_FILE_EVENT =>
text_io.put_line ("STUB: Event WPT_FILE_EVENT");

-- Use Wpt_AddEvent and Wpt_RemoveEvent and
-- Wpt_Extract_EventSource and Wpt_Extract_EventMask

when tae_wpt.WPT_TIMEOUT_EVENT =>
text_io.put_line ("STUB: Event WPT_TIMEOUT_EVENT");

— Use Wpt_SetTimeOut for this

-- LEAST LIKELY cases follow:

when tae_wpt.WPT_WINDOW_EVENT => null ;

-- WPT_WINDOW_EVENT can be caused by user acknowledgement
-- of a Wpt_Panemessage or windows which you
-- directly create with X (not TAE panels).
-- You MIGHT want to use Wpt_Extract_xEvent_Type here.

--DO NOT use Wpt_Extract_Parm_xEvent since this is not
-- a WPT_PARM_EVENT; you'll get a "storage error".

when tae_wpt.WPT_HELP_EVENT => --OR null ;
text_io.put("ERROR: WPT_HELP_EVENT: ");

text_io.put_line("should never see; reserved for TAE use");

when tae_wpt.WPT_INTERRUPT_EVENT => --OR null ;
text_io.put("ERROR: WPT_INTERRUPT_EVENT: ");

text_io.put_line("should never see; reserved for TAE use");

Type: ");

when OTHERS =>
text_io.put ("FATAL ERROR: Unknown Wpt_NextEvent Event

text_io.put (wpt_eventtype■image(etype)) ;
text_io.put_line (" ... Forcing exit.");
exit; — or raise an exception

end case; — NOTE: Do not add statements between here and "end loop

280

end loop EVENT_LOOP;

exception

when object_already_exists =>

put_line("Error: ") ;

put_line("The Designer you Adding Already Exists in DB");

when no_such_object =>

put_line("Error s ");
put_line("You are retrieving a Designer that does not Exists in

DB") ;

tered");

when db_open_failed =>

put_line("Error: ");

put_line("Probably you have a wrong DB name or DB is not regis-

when db_not_open =>

put_line("Error: ");

put_line("You are closing a DB that was not Open");

when no_active_transaction =>

put_line("Error: ");

put_line("You are commiting a Transaction which has not been

started");

when Ontos_failure =>
put_line("Error: ");

put_line("Ontos Failure");

when time_to_exit =>

put_line("Quitting edit team tool.");

close_database(ddb_name); — OSMÄN

end test_edit_team;

281

282

APPENDIX B. EXTENDED TEMPLATE CODE

A. A CLASS IMPLEMENTED USING THE RELATION TEMPLATE

1. (.hFile)

#ifndef _Person_OB JECT_H
#define _Person_OB JECT_H
#ifndef subordinates_relation_OBJECT_H
#include "subordinates_relation_OBJECT.h"
#endif
#ifndef supervisors_relation_OBJECT_H
#include "supervisors_relation_OBJECT.h"
#endif
#include <Object.h>
//#include <Reference.h>
//#include <Set.h>

class Person_ENTITY : public subordinates_relation_ENTITY, public
supervisors_relation_ENTTTY {
private:

int priv_level; // The designer expertise level

//0:low

//1: Medium

//2:high

int priv_status; // The availability status of a designer

//0:free

//1 : busy

public:

// Constructors
Person_ENTITY(char* name=(char*)0,int level= 0, int status=0);

Person_ENTITY (APL*); // (Ontos required Constructor)

// Ontos required member function)

283

virtual Type *getDirectType();

//

// For a class to be derived from multiple base classes (multiple
// inheritance) as our case, ONTOS requires that the following
// operaations be reimplemented :

void* operator new(OC_size_t sz);

void* operator new(OC_size_t sz, APL* theAPL);

void* operator new(OC_size_t sz, StorageManager* sm, Type* t);

void operator delete(void* v);

virtual void* startAddress() {return this;}

// ONTOS method for savig Object as pesistent Object
virtual void putObject(OC_Boolean deallocate=FALSE);

// ONTOS method for deleting an Object
virtual void deleteObject(OC_Boolean deallocate=FALSE);

//

// Accessors
int GetPersonLevel();

void SetPersonLevel(int level);

int GetPersonStatusO;

void SetPersonStatus(int status);

char* GetPersonNameO;

void SetPersonName(char* name);

//

};
#endif

284

2. (.cxx File)
/*

~ Unit : class Person implementation (.cxx)
— File : personc.cxx
--Date : DocumentedOct5,1995.
~ Author : Osman Ibrahim
--Systems : Sun C++ and ONTOS (2.1)
— Description : Provides the implementation (definition) for the Person

Class that implements the designer ADT in C++
*/

#ifndef _Person_OBJECT_H
#include "Person_OBJECT.h"
#endif
#include <Directory.h>
#include <Set.h>

// Set* Big_Set; //= new Set((Type*)OC_lookup("Person_ENTITY"));

//.
// constructors
//.

/* */

Person_ENTTTY: :Person_ENTTTY(APL* theAPL)
:subordinates_relation_ENTITY(theAPL),
supervisors_relation_ENTITY(theAPL)

// subordinates_relation_ENTITY(theAPL)
/* */

Person_ENTITY::Person_ENTTTY(char* name,int level, int status)
: subordinates_relation_ENTITY(name)

{
subordinates_relation_ENTITY :: initDirectType((Type

*)OC_lookup("Person_ENTITY"));

// subordinates_relation_ENTITY :: directType(getDirectType());
// Name(name);

priv_level = level;
priv_status = status;

285

}
//

// For a class to be derived from multiple base classes (multiple
// inheritance) as our case, ONTOS requires that the following
// operaations be reimplemented :

void* PersonJENTTTY :: operator new(OC_size_t sz)

{
return subordinates_relation_ENTITY :: operator new(sz);

}

//

void* Person_ENTITY :: operator new(OC_size_t sz, APL* theAPL)
{
return subordinates_relation_ENTnT :: operator new(sz, theAPL);

}

//

void* Person_ENTITY :: operator new(OC_size_t sz, StorageManager* sm, Type* t)

{
return subordinates_relation_ENTITY:: operator new(sz, sm,

(Type*)OC_lookup("Person_ENnTY"));
}
//

void Person_ENTITY :: operator delete(void* v)
{
subordinates_relation_ENTITY:: operator delete(v);

ti-

ll ONTOS method for savig Object as pesistent Object,
void Person_ENTITY :: putObject(OC_Boolean deallocate)
{
subordinates_relation_ENTITY :: putObject(FALSE);
supervisors_relation_ENTITY :: putObject(FALSE);

// subordinates_relation_ENTITY :: putObject(FALSE);

286

if (deallocate) delete this;
}
//
// ONTOS method for deleting an Object
void PersonJSNTTTY :: deleteObject(OC_Boolean deallocate)
{
supervisors_relation_ENTITY :: deleteObject(FALSE);
subordinates_relation_ENTTTY:: deleteObject(FALSE);
if (deallocate) delete this;

}
//
// Ontos required method for getting the type of the class

Type* Person_ENTITY::getDirectType()
{
return (Type*)OC_lookup("Person_ENTITY");

}

//.

// accessors
//.
/* */

void Person_ENTITY::SetPersonLevel(int level)
{
priv_level = level;

}
/* */

int Person_ENTITY: :GetPersonLevel()
{
return priv_level;

}
/* */

void Person_ENTITY::SetPersonStatus(int status)
{

priv_status= status;
}

/* */

int Person_ENTITY: :GetPersonStatus()

287

{
return priv_status;

}

/* */

char* Person_ENTITY:: GetPersonName()

{
return subordinates_relation_ENTITY:: Name();

}
/* */

void Person_ENTITY :: SetPersonName(char* name)
{
subordinates_relation_ENTITY:: Name(name);

}
/* */

C. m4 MACEOS:

1. Class Header Macro

define(test_header,
"#include <Object.h>
#include <Set.h>

class $1: public Object

{

private:

set* $1_$4;
$2 * $1_$2 ;

public:

$1($3,$5);

$1(APL*);

Type *getDirectType();

288

void add_$4($5 * x);

void set_$2($3 * x) {$1_$2 = x; }

$3 * get_$2() {return $1_$4 ;}

void remove_$4($5 * x);

int cardinaality_$4() {return
$l_$4->Cardinality();

OC_Boolean is_transitive_$4_of($5 * x)

OC_Boolean is_diret_$4_of($5 * x);
{return $l_$4->Ismember(Entity(x))}

};')

2. Class Definition Macro

define(test_body,
v#include <Directory.h>

$1($3, $5)
{
$1_$4= new Set($5);
$1_$2 = NULL;

$1 ::$1(APL *theAPL): Object(theAPL)
{

Type * $1 :: getDirectType()
{

return (Type*)OC_lookup("$l");
}

void add_$4($3 xl, $5 * x2)
{
if(!$l_$2)

set_$2(xl);
$2_$4->Insert(x2);

289

}

void remove_$4($5 * x)
{
$l_$4->Remove(x);

}')

3. Top Level Macro

syscmd(echo "test_header(subordinates_relation, tearnjeader, Person, designerjeam,
Person)" I m4 class.h.m4 - > outfile.h)

syscmd(echo "test_body(subordinates_relation, team_leader, Person, designer_team,
Person)" I m4 class.cxx.m4 - > outfile.cxx)

C. SAMPLE m4 OUTPUT

1. Sample m4 outpot for the Class Header

#include <Object.h>
#include <Set.h>

class subordinates_relation : public Object

{

private:

set* subordinates_relation_designer_team;
team_leader * subordinates_relation_team_leader;

public:

subordinates_relation(Person, Person);

subordinates_relation(APL*);

Type *getDirectType();

void add_designer_team(Person * x);

void set_team_leader(Person * x) {subordinates_relation_team_leader = x; }

Person * get_team_leader() {return subordinates_relation_designer_team;}

290

void remove_designer_team(Person * x);

int cardinaality_designer_team() {return
subordinates_relation_designer_team->Cardinality();

OC_Boolean is_transitive_designer_team_of(Person * x)

OC_Boolean is_diret_designer_team_of(Person * x);
{return subordinates_relation_designer_team->Ismember(Entity(x))}

};

2. Sample m4 outpot for the Class Definition

#include <Directory.h>

subordinates_relation(Person, Person)

{
subordinates_relation_designer_team= new Set(Person);
subordinates_relation_team_leader = NULL;

}

subordinates_relation ::subordinates_relation(APL *theAPL): Object(theAPL)
{
}

Type * subordinates_relation :: getDirectType()
{

return (Type*)OC_lookup("subordinates_relation");
}

void add_designer_team(Person xl, Person * x2)
{
if (! subordinates_relation_team_leader)

set_team_leader(x 1);
team_leader_designer_team->Insert(x2);

}

void remove_designer_team(Person * x)
{
subordinates_relation_designer_team->Remove(x);

}

291

292

APPENDIX C. PRIORITY VECTORS COMPUTATION PROGRAMS

A. PRIORITY VECTORS COMPUTATION USING MATLAB DIRECTLY

diary resultsMlll
finish = 1;
while finish == 1
MainMenu = menu (' Data Entry Menu' , ' 1- Enter Matrix Elements ' , ' 2-Display
Matrix', ' 3-Change Element', '4- Do Eigenvalue Computation','5-
ExitProgram');
if MainMenu==l
clear A;
n = input('Input Matrix Dimension ');
for i=l:n;
disp(['ROW Number ',num2str(i)])
disp('============')

for j=l:n;
element = input(['Enter Element (',num2str(i),' ,

',num2str(j), ')']);
A(i,j) = element;

end
end
disp(A)

elseif MainMenu==2
disp(A)
disp('Hit Any Key To Continue');
pause;

elseif MainMenu==3
rowN = input('Row# ');
colN = input('Col# ');
elementC = input('Enter New Element ');
A(rowN,colN) = elementC;

elseif MainMenu==4
clear X;
clear L;
clear lamda_max;
clear EV;
clear t;
clear i;
clear EVn;
[X,L]=eig(A);
max_val = 0;
for m=l:n

for k=l:n
if (L(m,k) > 0) & (L(m,k) > max_val)
max_val = L(m,k);
max_col = k;

end
end

293

end
lamda_max = max_val
EV=abs(X(:,max_col));
t=sum(EV);
i=l:n;
EVn(i)=EV(i)/t

else
finish = 2;
disp('Program Terminated Normally')

end
end

B. PRIORITY VECTORS COMPUTATION USING THE CRUDE
METHOD OF THE AHP

diary results_defC
finish = 1;
while finish == 1
MainMenu = menu('Data Entry Menu','1- Enter Matrix Elements', '2-Display
Matrix', ' 3-Change Element', '4- Do Eigenvalue Computation','5-
ExitProgram');
if MainMenu==l
clear A;
flops(0);
n = input('Input Matrix Dimension: ');

disp('
')

disp(['Priority Vector Computation Using the Rough Estimates Method of
the AHP for a Matrix of Order ', num2str(n)])

disp('
')

for i=l:n;
disp(["ROW Number ',num2str(i)])

disp(':

for j=l:n;
element = input(['Enter Element (',num2str(i),' ,

',num2str(j),')']);
A(i,j) = element;

end
end
disp('Comparison Matrix:')
A
elseif MainMenu==2

disp(A)
disp('Hit Any Key To Continue');

294

pause;
elseif MainMenu==3

rowN = input('Row# ');
colN = input('Col# ');
elementC = input('Enter New Element ');
A(rowN,colN) = elementC;

elseif MainMenu==4
clear X;
clear B;
clear V;

X = sum(A);
for m=l:n
for k=l:n

B(m,k) = A(m,k)/X(k) ;
end

end
for m=l:n
SumP = 0;
for k=l:n
SumP = SumP + B(m,k);

end
V(m) = SumP;
end
for k = l:n

V(k) = V(k)/n;
end

disp('Priority Vector is :')
V
VI = A*V';
for i=l:n;
V2(i) = Vl(i)/V(i);

end
S = sum(V2);
Lamda_max = S/n;

disp('Lamda Max Is :')
d i s p(Lamda_max)

disp(['FLOPS COUNT = ',num2str(flops)])
else
finish = 2;
disp('Program Terminated Normally')

end
end

295

296

APPENDIX D. PRIORITY VECTORS COMPUTATIONAL RESULTS

Examplel for n = 4

Input Matrix:

1. .0000 5, .0000 6, .0000 7. .0000
0. .2000 1. .0000 4. .0000 6. .0000
0. .1667 0, .2500 1. .0000 4. .0000
0. .1429 0. .1667 0. .2500 1. .0000

MATLAB Results:

lamda_max = 4.39 07
Periority Vector = 0.6187 0.2353 0.1009 0.0451
+++

The AHP Crude Method:

lamda_max = 4.4060

Priority Vector = 0.5910 0.2443 0.1151 0.0496

Example2 for n = 4

Input Matrix:

1. .0000 0. .3333 7. .0000 5. .0000
3. .0000 1. .0000 9. .0000 7. .0000
0, .1429 0. .1111 1. .0000 1. .0000
0, .2000 0. .1429 1. .0000 1. .0000

MATLAB Results:

lamda_max = 4.0933
Priority Vector = 0.2920 0.5888 0.0553 0.0639
++

The AHP Crude Method:

lamda_max = 4.0939

Priority Vector = 0.2966 0.5802 0.0575 0.0658

Examplel for n = 5

297

Input Matrix:

1.0000 7.0000 3.0000 7.0000 3.0000
0.1429 1.0000 0.3333 7.0000 0.1667
0.3333 3.0000 1.0000 7.0000 0.5000
0.1429 0.1429 0.1429 1.0000 0.1250
0.3333 6.0000 2.0000 8.0000 1.0000

MATLAB Results:

lamda_max = 5.5258

Priority Vector = 0.4580 0.0821 0.1634 0.0296 0.2670
+++
The AHP Crude Method:

lamda_max = 5.5599

Priority Vector = 0.4486 0.0902 0.1676 0.0326 0.2610

Example2 for n = 5

Input Matrix:

1.0000 0.3333 0.1429 0.2000 0.1667
3.0000 1.0000 0.2500 0.5000 0.5000
7.0000 4.0000 1.0000 7.0000 5.0000
5.0000 2.0000 0.1429 1.0000 0.2000
6.0000 2.0000 0.2000 5.0000 1.0000

MATLAB Results:

lamda_max = 5.5763

Priority Vector = 0.0363 0.0897 0.5424 0.1057 0.2259

+++

The AHP Crude Method:

lamda_max = 5.6072

Priority Vector = 0.0405 0.0994 0.5124 0.1252 0.2226

Examplel for n = 6

298

Input Matrix:

1. .0000 1. .0000 7.0000 5, .0000 3. .0000 0. .3333

1. .0000 1. .0000 5.0000 3. .0000 1. .0000 1. .0000

0. .1429 0. .2000 1.0000 0. .3333 0. .1429 0, .1111
0. .2000 0. .3333 3.0000 1. .0000 0. .3333 0. .3333

0. .3333 1. .0000 7.0000 3, .0000 1. .0000 0. .2000

3. .0000 1. .0000 9.0000 3. .0000 5. .0000 1. .0000

MATLAB Results:

lamda_max = 6.47 50

Priority Vector = 0.2240 0.1915 0.0275 0.0649 0.1325
0.3596

++++++++++++++++++++++++++++++H-+++++++++++++++++++++++++++++++++++++++

The AHP Crude Method:

lamda_max = 6.4763

Priority Vector = 0.2233 0.1967 0.0289 0.0686 0.1427
0.3399

Example2 for n = 6

Input Matrix:

1.0000 0.3333 8.0000 3.0000 3.0000 7.0000

3.0000 1.0000 9.0000 3.0000 3.0000 9.0000

0.1250 0.1111 1.0000 0.1667 0.2000 2.0000

0.3333 0.3333 6.0000 1.0000 0.3333 6.0000
0.3333 0.3333 5.0000 3.0000 1.0000 6.0000
0.1429 0.1111 0.5000 0.1667 0.1667 1.0000

MATLAB Results:

lamda_max = 6.453 6

Priority Vector = 0.2619 0.3975 0.0334 0.1164 0.1642
0.0266

The AHP Crude Method:

lamda max = 6.4616

Priority Vector = 0.2549 0.3889 0.0360 0.1258 0.1668
0.0277

299

Examplel for n = 7

Input Matrix:

1.0000 4.0000 9.0000 6 0000 6 0000 5.0000 5.0000
0.2500 1.0000 7.0000 5 0000 5 0000 3.0000 4.0000

0.1100 0.1400 1.0000 0 2000 0 2000 0.1400 0.2000
0.1700 0.2000 5.0000 1 0000 1 0000 0.3300 0.3300
0.1700 0.2000 5.0000 1 0000 1 .0000 0.3300 0.3300
0.2000 0.3300 7.0000 3 0000 3 .0000 1.0000 2.0000
0.2000 0.2500 5.0000 3 0000 3 .0000 0.5000 1.0000

MATIAB Result 3 :

lamda max = 7 .5996

Priority Vector = 0.4273 0.2304
0.1226 0.0943

0.0206 0.0524 0.0524

The AHP Crude Method:

lamda_max = 7.60 62

Priority Vector = 0.4085
0.1277

0.2264
0.1002

0.0216 0.0577 0.0577

Examplel for n = 8

Input Matrix:

1.0000 3 0000 6 0000 3 0000 7 .0000 7 0000 9 0000
0.3333 1 0000 4 0000 5 0000 5 .0000 5 0000 7 0000
0.1667 0 2500 1 0000 1 0000 0 5000 4 0000 4 0000
0.3333 0 .2000 1 0000 1 0000 2 0000 3 0000 9 0000
0.1429 0 .2000 2 0000 0 5000 1 0000 3 0000 3 0000
0.1429 0 .2000 0 2500 0 3333 0 3333 1 0000 4 0000
0.1111 0 .1429 0 2500 0 1111 0 3333 0 2500 1 0000
0.1111 0 .1111 0 1250 0 1111 0 1429 0 1111 0 1429

Column 8

9.0000
9.0000
8.0000
9.0000

300

7.0000
9.0000
7.0000
1.0000

MATLAB Results:

lamda_max = 9.2557

Priority Vector = 0.3617 0.2520 0.0880 0.1186 0.0828
0.0529 0.0302 0.0139

The AHP Crude Method:

lamda_max = 9.3231

Priority Vector = 0.3525 0.2407 0.0905 0.1233 0.0839
0.0589 0.034 0.0153

Examplel for n = 9

Input Matrix:

1. .0000 1 .0000 1. .0000 0, .1667 0. .1667 0. .1667 0. .1111

1. .0000 1. .0000 1. .0000 0, .1667 0. .1667 0. .1667 0. .1111

1. .0000 1. .0000 1. .0000 0. .1667 0. .1667 0. .1667 0, .1111

6. .0000 6. .0000 6. .0000 1. .0000 1. .0000 1. .0000 0. .5000

6. .0000 6, .0000 6. .0000 1. .0000 1. .0000 1. .0000 0. .5000

6. .0000 6. .0000 6. .0000 1. .0000 1. .0000 1. .0000 1. .0000

9. .0000 9. .0000 9. .0000 2. .0000 2. .0000 1. .0000 1. .0000

9. .0000 9. .0000 9. .0000 2. .0000 2, .0000 1. .0000 1. .0000

9. .0000 9. .0000 9. .0000 2. .0000 2. .0000 1. .0000 1. .0000

Columns 8 through 9

0, .1111 0. .1111
0. .1111 0. .1111
0. .1111 0. .1111
0. .5000 0. .5000
0, .5000 0. .5000
1. .0000 1. .0000
1. .0000 1. .0000
1. .0000 1. .0000
1. .0000 1. .0000

301

MATLAB Results:

lamda_max = 9.0729

Priority Vector = 0.0206
0.1442

0.0206
0.1895

0.0206
0.1895

0.1129
0.1895

0.1129

The AHP Crude Method:

lamda_max = 9.0731

Priority Vector = 0.0206
0.1447

0.0206
0.1889

0.0206
0.1889

0.1134
0.1889

0.1134

Examp1e2 for n = 9

Input Matrix:

Columns 1 through 7

1.0000 4 0000 8.0000 2 0000 4 .0000 4 0000 4 0000
0.2500 1 0000 1.0000 4 0000 0 .5000 1 0000 1 0000
0.1250 1 0000 1.0000 0 1667 0 .1667 1 0000 3 0000
0.5000 0 2500 6.0000 1 0000 1 .0000 3 0000 5 0000
0.2500 2 0000 6.0000 1 0000 1 .0000 3 0000 5 0000
0.2500 1 0000 1.0000 0 3333 0 .3333 1 0000 3 0000
0.2500 1 0000 0.3333 0 .2000 0 .2000 0 3333 1 0000
0.2500 1 0000 0.2500 0 1667 0 .1667 0 2500 0 5000
0.1667 1 0000 0.2500 0 .1667 0 .1667 0 2500 0 5000

Columns 8 through 9

4 0000 6 0000
1 0000 1 0000
4 0000 4 0000
6 0000 6 0000
6 0000 6 0000
4 0000 4 0000
2 0000 2 0000
1 0000 2 0000
1 0000 1 0000

MATLAB Results:

lamda_max =

Priority Vector 0.2893
0.0781

0.1096
0.0442

0.0695
0.0366

0.1651
0.0315

0.1761

302

The AHP Crude Method:

lamda_max =10.8257

Priority Vector = 0.2813 0.0996 0.0745 0.1676 0.1744
0.0836 0.0473 0.0391 0.0326

303

304

APPENDIX E. COMPUTATIONAL RESULTS FOR THE CASE STUDY

SHI Judgement Profile

Criticism Matrix:

1.0000 0.3333 2.0000
2.0000 1.0000 4.0000
0.3333 0.3333 1.0000

lamda_max = 2.8982

Priority Vector = 0.2609 0.5897 0.1494

Budget Matrix:

1.0000 0.7500
1.3300 1.0000

lamda_max = 1.9987

Priority Vector = 0.4289 0.5711

Safety Matrix:

1 1
1 1

lamda_max = 2.0000

Priority Vector = 0.5000 0.5000

Deadline Matrix:

1 0000 0.6667
1 5000 1.0000

lamda max = 2

305

Priority Vector = 0.4000 0.6000

SHI Compsite Priority = 0.47 0.53

SH2 Judgement Profile

Criteria Matrix:

1.0000 2.0000 0.5000
0.3333 1.0000 1.6000
0.2500 0.5000 1.0000

lamda_max = 2.4794

Priority Vector = 0.4927 0.3169 0.1904

++

Budget Matrix:

1.0000 0.3333
2.0000 1.0000

lamda_max = 1.8165

Priority Vector = 0.2899 0.7101
+++

Safety Matrix:

1.0000 1.5000
0.2000 1.0000

lamda_max = 1.5477

Priority Vector = 0.7325 0.2675
+++

Deadline Matrix:

1.0000 0.7000
1.4000 1.0000

lamda_max = 1.9899

Priority Vector = 0.4142 0.5858

SH2 Compsite Priority =0.45 0.55

306

+++

+ SH3 Judgement Profile

Criteria Matrix:

1.0000 0.5000 0.6667
3.0000 1.0000 2.0000
0.5000 0.3333 1.0000

lamda_max = 2.7767

Priority Vector = 0.2325 0.5911 0.1763

++

Budget Matrix:

1 1
1 1

lamda_max = 2.0000

Priority Vector = 0.5000 0.5000

+++

Safety Matrix:

1 1
1 1

lamda_max = 2.0000

Priority Vector = 0.5000 0.5000

++

Deadline Matrix:

1.0000 1.5000
0.5000 1.0000

lamda_max = 1.8660

Priority Vector = 0.6340 0.3660

SH3 Compsite Priority =0.52 0.48

+++

307

SH4 Judgement Profile

Criteria Matrix:

1.0000 1.0000 2.5000
1.0000 1.0000 1.0000
0.2000 0.5000 1.0000

lamda_max = 2.6905

Priority Vector = 0.4635 0.3717 0.1648

+++

Budget Matrix

1.0000 0.5000
3.0000 1.0000

lamda_max = 2.2247

Priority Vector = 0.2899 0.7101

+++

Safety Matrix:

1 1
1 1

lamda_max = 2.0000

Priority Vector = 0.5000 0.5000

+++

Deadline Matrix

1.0000 0.2500
3.0000 1.0000

lamda_max = 1.8660

Priority Vector = 0.2240 0.7760

SH4 Compsite Priority = 0.36 0.64

++

308

SH5 Judgement Profile

Criteria Matrix:

1.0000 0.5000 1.0000
3.0000 1.0000 2.0000
1.0000 0.2500 1.0000

lamda_jmax = 2.9717

Priority Vector = 0.2415 0.5644 0.1941

++

Budget Matrix:

1.0000 0.5000
2.1000 1.0000

lamda_max = 2.0247

Priority Vector = 0.3279 0.6721

+++

safety Matrix:

1.0000 2.0000
0.3333 1.0000

lamda_max = 1.8165

Priority Vector = 0.7101 0.2899

+++

Deadline Matrix:

1 1
1 1

lamda_max = 2.0000

Priority Vector = 0.5000 0.5000

SH5 Compsite Priority =0.58 0.42

309

310

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Department of Computer Science
Code CS
Naval Postgraduate School
Monterey, California 93943

4. Armament Authority, Training Dept. (Egypt)
c/o American Embassy (Cairo, Egypt),
Office of Military Cooperation,
Box 29 (TNG)
FPO, NY 09527-0051

5. Professor Valdis Berzins, Code CS/Bz
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Professor Luqi, Code CS/Lq
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

7. Professor Mantak Shinng Code CS/Sh
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Professor Herschel H. Loomis, Jr, Chairman,
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

311

9. Professor Qing Wang, Code MR/Wg
Department of Meteorology
Naval Postgraduate School
Monterey, California 93943

10. Colonel Osman Mohamed Ibrahim
15 Officers Housing, (Apt. 23),
Mazrat El-Haram,
El-Haram, Giza, Egypt

11. LTC. Nabel Khalil
SGC# 3079
Naval Postgraduate School
Monterey, California 93943

12. Maj. Hazem Abd El-Hameed
SGC# 3078
Naval Postgraduate School
Monterey, California 93943

312

